Chromatin Modulation by Histone Deacetylase Inhibitors: Impact on Cellular Sensitivity to Ionizing Radiation.

نویسنده

  • France Carrier
چکیده

It is well established that cells are more sensitive to ionizing radiation during the G2/M phase of the cell cycle when their chromatin is highly compacted. However, highly compacted chromatin is less susceptible to DNA Double Strand Breaks (DSBs) than relaxed chromatin. Therefore, it is now becoming apparent that it is the cell capacity to repair its damaged DNA and refold its chromatin into its original compacted status that primarily affects the overall cellular sensitivity to ionizing radiation. The Histone Deacetylase Inhibitors (HDACIs) are a new class of anticancer agents that relax chromatin structure by increasing the levels of histone acetylation. The effect of HDACIs on normal and cancer cells sensitivity to ionizing radiation differs. Reports have indicated that HDACIs can protect normal cells while simultaneously sensitize cancer cells to ionizing radiation. This difference may stem from the individual characteristic of the normal and cancer cells chromatin structure. This review discusses this possibility and addresses the role of HDACIs in radiation therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

BACKGROUND The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cel...

متن کامل

Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death.

In breast cancer, radiation has a central role in the treatment of brain metastasis, although tumor sensitivity might be limited. The tumor cell defense response to ionizing radiation involves activation of cell cycle checkpoint signaling. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby aberrations in the chromatin structure, may also ov...

متن کامل

The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment.

Histone deacetylase (HDAC) inhibitors are a group of anticancer drugs which cause growth arrest and apoptosis of several tumor cells. HDAC inhibitors have been also found to increase the anticancer efficacy of several treatment modalities i.e. chemotherapy or radiotherapy. Here, we review the literature on combinations of HDAC inhibitors both with ionizing radiation and with other drugs, highli...

متن کامل

Valproic acid alters chromatin structure by regulation of chromatin modulation proteins.

Histone acetylation and deacetylation are crucial in the regulation of gene expression. Dynamic changes in gene expression may affect chromatin structure and, consequently, the interaction of chromatin with regulatory factors. In this study, the effects of the antiseizure drug valproic acid (VPA) on the expression of genes that regulate the structure of chromatin and the access of macromolecule...

متن کامل

Search for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study

Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular pharmacology

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2013