Working-Fluid Selection for Minimized Thermal Resistance in Ultra-Thin Vapor Chambers

نویسندگان

  • G. Patankar
  • J A. Weibel
  • S V. Garimella
  • Gaurav Patankar
  • Justin A. Weibel
  • Suresh V. Garimella
چکیده

The behavior of a vapor chamber is strongly coupled to the thermophysical properties of the working fluid within. It is well known that these properties limit the maximum power (heat load) at which a vapor chamber can operate, due to incidence of the capillary limit. At this limit, the available capillary pressure generated within the wick structure balances the total pressure drop incurred along the path of fluid flow within the wick. A common figure of merit prioritizes working fluids that maximize this capillary-limited operating power. The current work explores working fluid selection for ultra-thin vapor chambers based on a thermal performance objective, rather than for maximized power dissipation capability. A working fluid is sought in this case that provides the minimal thermal resistance while ensuring a capillary limit is not reached at the target operating power. A resistance-network-based model is used to develop a simple analytical relationship for the vapor chamber thermal resistance as a function of the working fluid properties, operating power, and geometry. At small thicknesses, the thermal resistance of vapor chambers becomes governed by the saturation temperature gradient in the vapor core, which is dependent on the thermophysical properties of the working fluid. To satisfy the performance objective, it is shown that the choice of working fluid cannot be based on a single figure of merit containing only fluid properties. Instead, the functional relationship for thermal resistance must be analyzed taking into account all operating and geometric parameters, in addition to the thermophysical fluid properties. Such an approach for choosing the working fluid is developed and demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in Vapor Chamber Transport Characterization for High Heat Flux Applications

Owing to their high reliability, simplicity of manufacture, passive operation, and effective heat transport, flat heat pipes and vapor chambers are used extensively in the thermal management of electronic devices. The need for concurrent size, weight, and performance improvements in high-performance electronics systems, without resort to active liquid-cooling strategies, demands passive heat sp...

متن کامل

Selection of the optimum prime mover and the working fluid in a regenerative organic rankine cycle

A regenerative organic Rankine cycle (RORC) is modeled and optimized for the use of waste heat recovery from a prime mover (PM). Three PMs including, a diesel engine, a gas engine, and a microturbine are selected in this study. Four refrigerants including isobutane, R123, R134a, and R245fa are selected. The nominal capacity of the PM, PM operating partial load, turbine inlet pressure, condenser...

متن کامل

Influence of Thickness and Number of Silver Layers in the Electrical and Optical Properties of ZnO/Ag/ZnO/Ag/ZnO ultra-Thin Films Deposited on the Glass for Low-Emissivity Applications

We report on transparent ZnO/Ag/ZnO and ZnO/Ag/ZnO/Ag/ZnO thin-films were deposited on the glass substrate by RF and DC sputtering for ZnO and Ag targets, respectively. The electrical and optical properties of the single and double Low Emissivity coatings were investigated with respect to the deposition time of Ag mid layer. The visible transmittance remains about 65% for single and 45% for...

متن کامل

An Experimentally Validated Model for Transport in Thin, High Thermal Conductivity, Low CTE Heat Spreaders

Passive phase-change thermal spreaders such as vapor chambers have been widely employed to spread the heat from small-scale high-flux heat sources to larger areas. In the present work, a numerical model for ultra-thin vapor chambers has been developed which is suitable for reliable predictions of the operation at high heat fluxes and small scales. The effects of boiling in the wick structure on...

متن کامل

Metal functionalization of carbon nanotubes for enhanced sintered powder wicks

Phase change cooling schemes involving passive heat spreading devices, such as heat pipes and vapor chambers, are widely adopted for thermal management of high heat-flux technologies. In this study, carbon nanotubes (CNTs) are fabricated on a 200 lm thick sintered copper powder wick layer using microwave plasma enhanced chemical vapor deposition technique. A physical vapor deposition process is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016