Adaptive Neural Networks for Flood Routing in River Systems

نویسنده

  • Saman Razavi
چکیده

A methodology based on adaptive ANN models is proposed for flood routing in river systems. The proposed methodology is capable of modeling both converging and diverging river networks. A Multilayer Perceptron Network (MLP), a Recurrent Neural Network (RNN), a Time Delay Neural Network (TDNN) and a Time Delay Recurrent Neural Network (TDRNN) are applied in this study. An Adaptive training procedure based on the Forgetting Factor (FF) approach is used to train ANNs models. The methodology provides a lead time equal to travel time for the flood estimation downstream of the river. The performances of the models are tested within the two distinctive parts of the Karoon River in south-west Iran. The first case study uses synthetic floods generated by the HEC-RAS hydraulic model; the second one uses observed floods. Besides, the Muskingum routing method is used in the second case study to be compared with the results of ANN models. Overall, the results demonstrated that the proposed methodology performs well considering goodness-of-fit criteria. Moreover, the dynamic neural networks outperform the static MLP and the Muskingum model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks

Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...

متن کامل

Flood Forecasting Using Neural Networks

This paper deals with flood routing in rivers using neural networks. The unsteady river flow may be formulated in terms of two one-dimensional partial differential equations. These are the Saint Venant flow continuity and dynamic equations. Several methods of solution of these equations are known. These methods are based upon characteristics of equations, finite difference, finite element and f...

متن کامل

Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks

Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...

متن کامل

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012