Identification of Earthquake Induced Damage Areas Using Fourier Transform and SPOT HRVIR Pan Images
نویسنده
چکیده
A devastating earthquake with a magnitude of Mw 7.4 occurred on the North Anatolian Fault Zone (NAFZ) of Turkey on August 17, 1999 at 00:01:39 UTC (3:01 a.m. local time). The aim of this study is to propose a new approach to automatically identify earthquake induced damage areas which can provide valuable information to support emergency response and recovery assessment procedures. This research was conducted in the Adapazari inner city, covering a 3 × 3 km area, where 11,373 buildings collapsed as a result of the earthquake. SPOT high resolution visible infrared (HRVIR) Pan images obtained before (25 June 1999) and after (4 October 1999) the earthquake were used in the study. Five steps were employed to conduct the research and these are: (i) geometric and radiometric correction of satellite images, (ii) Fast Fourier Transform (FFT) of pre- and post-earthquake images and filtering the images in frequency domain, (iii) generating difference image using Inverse Fast Fourier Transform (IFFT) pre- and post- earthquake images, (iv) application of level slicing to difference image to identify the earthquake-induced damages, (v) accuracy assessment of the method using ground truth obtained from a 1/5,000 scale damage map. The total accuracy obtained in the research is 80.19 %, illustrating that the proposed method can be successfully used to automatically identify earthquake-induced damage areas.
منابع مشابه
Burned Area Mapping in Greece Using SPOT-4 HRVIR Images and Object-Based Image Analysis
The devastating series of fire events that occurred during the summers of 2007 and 2009 in Greece made evident the need for an operational mechanism to map burned areas in an accurate and timely fashion to be developed. In this work, Système pour l’Observation de la Terre (SPOT)-4 HRVIR images are introduced in an object-based classification environment in order to develop a classification proc...
متن کاملMultiscale Fourier Domain Fusion Technique for Remotely Sensed Spot Images
In this study we examine the use of Multiscale Fourier Transforms (MFT) on the effect of image fusion and segmentation. The proposed method takes SPOT-PAN and SPOT-XS images to register using MFT technique to produce high quality fused image. The algorithm works iterativly from coarsest level of decomposition to the top level. This process applied to the all sub-bands in order to give best choi...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملEstimation of Earthquake Damage Through Radar Interferometry (Case study: Bam 2003 Earthquake)
The estimate of the damage caused by the earthquake and other natural disasters in the first days after the occurrence of these events can provide a quick damages assessment and help to manage the crisis. Several methods are available to investigate the extent of earthquake’s damage. Optical remote sensing, photogrammetric methods (UAVs and LIDARs), radar interferometry (InSAR) and field observ...
متن کاملPost-earthquake Damage Assessment Using Satellite and Airborne Data in the Case of the 1999 Kocaeli Earthquake, Turkey
To date, prevention of natural disasters is only rarely achieved, and such events continue to pose an increasing threat to life and property. Especially following earthquakes, there is a need for rapid, accurate and reliable damage information in the critical postevent hours. Remote sensing technology can provide valuable information for response activities due to potentially high spatialtempor...
متن کامل