Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes.
نویسندگان
چکیده
Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.
منابع مشابه
Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.
Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT...
متن کاملStretchable and Highly Conductive Carbon Nanotube-Graphene Hybrid Yarns for Wearable Systems
Carbon Nanotubes (CNTs) have emerged as potential candidates for replacement of conventional metals due to their significant mechanical, electrical, thermal properties and non-oxidizing abilities [1, 2]. The density of CNT composites is about five times lower than copper and around half that of aluminium. Moreover, their thermal conductivity is about ten times that of copper. With the above men...
متن کاملCharacterization of Single-Walled Carbon Nanotube and Graphene-Based Field-Effect Transistors
We describe a transparent and flexible field-effect transistor (FET) made from graphene and single-walled carbon nanotubes (SWNT) hybrid system. Graphene and vertically aligned SWNTs simultaneously grown by alcohol catalytic chemical vapor deposition (ACCVD) were employed as channel and source-drain electrode, respectively. Gate electrode was also made of SWNTs separated with a thin poly(vinyl ...
متن کاملStretchable Binary Fresnel Lens for Focus Tuning.
This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchab...
متن کاملCvd Growth and Heat Transfer of Carbon Nanotubes
Carbon nanotubes and graphene are extra-ordinal material with remarkable electrical, optical, mechanical and thermal properties. Films of vertically aligned (VA-) SWNTs and horizontally aligned (HA-) SWNTs are synthesized on quartz and crystal quartz substrates, respectively. These aligned film should inherit the remarkable properties of SWNTs. The recent progress in growth control and characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 28 46 شماره
صفحات -
تاریخ انتشار 2017