Density Dependence in an Annual Plant Community: Variation among Life History Stages
نویسندگان
چکیده
Most studies of density-dependent demography in plants consider the density only of the single focal species being studied. However, density-dependent regulation in plants may frequently occur at the level of the entire community, rather than only within particular species. In addition, because density dependence may differ considerably (even in direction) among demographic parameters, generalizing about patterns of density dependence and extrapolating to lifetime fitness and to population dynamics require comparisons among life history stages, as well as among types of species and physical environments. We constructed seminatural communities of desert annuals composed of all the constituent species in the same relative proportions as found in the natural habitat. These experimental communities were planted at a range of densities that extended far above and below mean natural field density. We compared among physical environments (irrigation treatments), among communities from different physical environments, and among growth forms (dicot and graminoid) to search for generalizations about the magnitude and direction of density dependence. Strong evidence of community-level density dependence was detected at all three life history stages studied in these desert annuals: emergence, survival, and final size. However, both the direction and degree of consistency of this density dependence varied considerably among the stages. The strongest and most consistent competitive effects were experienced at the emergence stage, where the mechanism is most likely a form of interference competition rather than exploitation competition. At the survival stage, the magnitude of effects was highly variable among physical environments and source communities, but negative effects were relatively rare, with either positive or no significant effects of increasing density. Thus, exploitation competition was also unimportant at the survival stage. In contrast, for growth, exploitation competition appeared to be the primary mechanism of interaction influencing growth. This variation in mechanism, direction, and magnitude of interactions among life history stages suggests that current models of plant community structure that are based largely on exploitation competition as it influences growth (with mortality a simple function of growth) are inadequate for even this simple annual plant community. We also compared growth forms and found that graminoids were superior competitors to dicots at the emergence and survival stages; they also had higher emergence and survival, regardless of density. Consistent with this result, grasses are always the numerical dominants in the source communities. In contrast, the two growth forms did not differ in competitive ability for growth, and dicots were consistently larger individuals, independent of density, even though grasses were also usually the biomass dominants in the source communities. These results suggest the importance of nontrophic mechanisms of interaction in controlling community structure and again emphasize the importance of constructing and testing models that incorporate multiple mechanisms of interactions.
منابع مشابه
Annual plant–shrub interactions along an aridity gradient
Annual plants in semi-arid and arid areas are often closely associated with shrubs. The degree of association largely depends on the balance of negative and positive effects between these contrasting plant life-forms, ranging from interference to facilitation. Since positive interactions are predicted to become less important with increasing rainfall, the interaction balance is expected to shif...
متن کاملAnnual and Spatial Variation in Seedfall and Seedling Recruitment in a Neotropical Forest
An economy of scale may lead to selection to increase interannual variation in seed production when the per seed probability of seedling establishment increases with seed production. Variable annual seedfall will, however, reduce this probability when postdispersal seed fate is negatively density dependent on the local density of seeds, and seed dispersal and density dependence act identically ...
متن کاملPlant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field
Rhizosphere microbial communities are critically important for soil nitrogen cycling and plant productivity. There is evidence that plant species and genotypes select distinct rhizosphere communities, however, knowledge of the drivers and extent of this variation remains limited. We grew 11 annual species and 11 maize (Zea mays subsp. mays) inbred lines in a common garden experiment to assess t...
متن کاملSpecial section Influence of density dependence on the detection of trends in unobserved life-history stages
In many species, certain life-history stages are difficult or impossible to observe directly, hampering management. Often more easily observed stages are monitored instead, but the extent to which various forms of uncertainty cloud our ability to discern trends in one critical life-history stage by observing another is poorly studied. We develop a stochastic simulation model for threatened Cali...
متن کاملNegative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest
Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter ...
متن کامل