On the Power-Law Tail in the Mass Function of Protostellar Condensations and Stars
نویسندگان
چکیده
We explore the idea that the power-law tail in the mass function of protostellar condensations and stars arises from the accretion of ambient cloud material on to a condensation, coupled with a nonuniform (exponential) distribution of accretion lifetimes. This model allows for the generation of power-law distributions in all star-forming regions, even if condensations start with a lognormal mass distribution, as may be expected from the central limit theorem, and supported by some recent numerical simulations of turbulent molecular clouds. For a condensation mass m with growth rate dm/dt ∝ m, an analytic three-parameter probability density function is derived; it resembles a lognormal at low mass and has a pure power-law high-mass tail. An approximate power-law tail is also expected for other growth laws, and we calculate the distribution for the plausible case dm/dt ∝ m. Furthermore, any single time snapshot of the masses of condensations that are still accreting (and are of varying ages) also yields a distribution with a power-law tail similar to that of the IMF.
منابع مشابه
A Minimum Hypothesis Explanation for an Imf with a Lognormal Body and Power Law Tail
We present a minimum hypothesis model for an IMF that resembles a lognormal distribution at low masses but has a distinct power-law tail. Even if the central limit theorem ensures a lognormal distribution of condensation masses at birth, a power-law tail in the distribution arises due to accretion from the ambient cloud, coupled with a non-uniform (exponential) distribution of accretion times. ...
متن کاملThe effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations
Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...
متن کاملProtostellar feedback in turbulent fragmentation: consequences for stellar clustering and multiplicity
Stars are strongly clustered on both large (∼pc) and small (∼binary) scales, but there are few analytic or even semi-analytic theories for the correlation function and multiplicity of stars. In this paper, we present such a theory, based on our recently developed semi-analytic framework called MISFIT (Minimalistic Star Formation Including Turbulence), which models gravitoturbulent fragmentation...
متن کاملThe Formation of Stellar Clusters: Gaussian Cloud Conditions I
The isothermal dynamical evolution of a clumpy molecular cloud region and its fragmentation into a protostellar cluster is investigated numerically. The initial density distributions are generated from different realizations of a Gaussian random field with power spectrum P (k) ∝ k. During the evolution of the system, the one-point probability distribution functions (pdf) of the gas density and ...
متن کاملMagnetically Regulated Star Formation in 3D: The Case of Taurus Molecular Cloud Complex
We carry out three-dimensional MHD simulations of star formation in turbulent, magnetized clouds, including ambipolar diffusion and feedback from protostellar outflows. The calculations focus on relatively diffuse clouds threaded by a strong magnetic field capable of resisting severe tangling by turbulent motions and retarding global gravitational contraction in the cross-field direction. They ...
متن کامل