Deep Automated Multit-task Learning
نویسندگان
چکیده
Multi-task learning (MTL) has recently contributed to learning better representations in service of various NLP tasks. MTL aims at improving the performance of a primary task, by jointly training on a secondary task. This paper introduces automated tasks, which exploit the sequential nature of the input data, as secondary tasks in an MTL model. We explore next word prediction, next character prediction, and missing word completion as potential automated tasks. Our results show that training on a primary task in parallel with a secondary automated task improves both the convergence speed and accuracy for the primary task. We suggest two methods for augmenting an existing network with automated tasks and establish better performance in topic prediction, sentiment analysis, and hashtag recommendation. Finally, we show that the MTL models can perform well on datasets that are small and colloquial by nature.
منابع مشابه
Detection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملDeepMath - Deep Sequence Models for Premise Selection
We study the effectiveness of neural sequence models for premise selection in automated theorem proving, one of the main bottlenecks in the formalization of mathematics. We propose a two stage approach for this task that yields good results for the premise selection task on the Mizar corpus while avoiding the handengineered features of existing state-of-the-art models. To our knowledge, this is...
متن کاملReasoning with Deep Learning: an Open Challenge
Building machines capable of performing automated reasoning is one of the most complex but fascinating challenges in AI. In particular, providing an effective integration of learning and reasoning mechanisms is a long-standing research problem at the intersection of many different areas, such as machine learning, cognitive neuroscience, psychology, linguistic, and logic. The recent breakthrough...
متن کاملEvolving Deep Neural Networks
e success of deep learning depends on nding an architecture to t the task. As deep learning has scaled up to more challenging tasks, the architectures have become dicult to design by hand. is paper proposes an automated method, CoDeepNEAT, for optimizing deep learning architectures through evolution. By extending existing neuroevolution methods to topology, components, and hyperparameters,...
متن کامل