Ethylene and the growth of rice seedlings.

نویسندگان

  • S O Satler
  • H Kende
چکیده

Etiolated whole rice seedlings enclosed in sealed vials produced ethylene at a rate of 0.9 picomole per hour per seedling. When 2-centimeter-long shoots were subdivided into 5-millimeter-long sections, the sections containing the tip of the shoot evolved 37% of the total ethylene with the remaining 63% being produced along a gradient decreasing to the base of the shoot. The tip of the coleoptile also had the highest level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and of the ethylene-forming enzyme activity. Ethylene is one of the factors controlling coleoptile elongation. Decapitation of the seedling reduced ethylene evolution to one-third its original level and inhibited coleoptile growth. In short-term experiments, the growth rate of decapitated seedlings was restored to almost that of intact seedlings by application of ethylene at a concentration of 10 microliters per liter. Apart from ethylene, O(2) also participates in the control of coleoptile growth. When rice seedlings were grown in a gas mixture of N(2) and O(2), the length of the coleoptiles reached a maximum at a concentration of 2.5% O(2). Lower and higher concentrations of O(2) reduced coleoptile growth. The effect of exogenous ethylene on coleoptile growth was also O(2) dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytotoxicity of methylene blue to rice seedlings

Methylene blue is widely used in various industrial branches. Due to insufficient treatment, its occurrence in wastewater is frequently detected, which may result in serious environment problems to aquatic organisms. Hydroponic experiments were conducted with rice seedlings (Oryza sativa L. cv. XZX 45) exposed to methylene blue to determine the effective concentration using relative gr...

متن کامل

Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings.

Elongation of the mesocotyl and coleoptile facilitates the emergence of rice (Oryza sativa) seedlings from soil and is affected by various genetic and environment factors. The regulatory mechanism underlying this process remains largely unclear. Here, we examined the regulation of mesocotyl and coleoptile growth by characterizing a gaoyao1 (gy1) mutant that exhibits a longer mesocotyl and longe...

متن کامل

Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-lo...

متن کامل

Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene ...

متن کامل

On the role of abscisic Acid and gibberellin in the regulation of growth in rice.

Submergence induces rapid elongation of rice coleoptiles (Oryza sativa L.) and of deepwater rice internodes. This adaptive feature helps rice to grow out of the water and to survive flooding. Earlier, we found that the growth response of submerged deepwater rice plants is mediated by ethylene and gibberellin (GA). Ethylene promotes growth, at least in part, by increasing the responsiveness of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 1985