A Spatial-Temporal Probabilistic Matrix Factorization Model for Point-of-Interest Recommendation | Proceedings of the 2016 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics

نویسندگان

  • Huayu Li
  • Richang Hong
  • Zhiang Wu
  • Yong Ge
چکیده

With the rapid development of Location-based Social Network (LBSN) services, a large number of Point-of-Interests (POIs) have been available, which consequently raises a great demand of building personalized POI recommender systems. A personalized POI recommender system can significantly help users to find their preferred POIs and assist POI owners to attract more customers. However, due to the complexity of users’ checkin decision making process that is influenced by many different factors such as POI distance and region’s prosperity, and the dynamics of user’s preference, POI recommender systems usually suffer from many challenges. Although different latent factor based methods (e.g., probabilistic matrix factorization) have been proposed, most of them do not successfully incorporate both geographical influence and temporal effect together into latent factor models. To this end, in this paper, we propose a new Spatial-Temporal Probabilistic Matrix Factorization (STPMF) model that models a user’s preference for POI as the combination of his geographical preference and other general interest in POI. Furthermore, in addition to static general interest of user, we capture the temporal dynamics of user’s interest as well by modeling checkin data in a unique way. To evaluate the proposed STPMF model, we conduct extensive experiments with many state-of-the-art baseline methods and evaluation metrics on two real-world data sets. The experimental results clearly demonstrate the effectiveness of our proposed STPMF model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization | Proceedings of the 2015 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics

With the rapid development of smart TV industry, a large number of TV programs have been available for meeting various user interests, which consequently raise a great demand of building personalized TV recommender systems. Indeed, a personalized TV recommender system can greatly help users to obtain their preferred programs and assist TV and channel providers to attract more audiences. While d...

متن کامل

Latent Factor Transition for Dynamic Collaborative Filtering | Proceedings of the 2014 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics

User preferences change over time and capturing such changes is essential for developing accurate recommender systems. Despite its importance, only a few works in collaborative filtering have addressed this issue. In this paper, we consider evolving preferences and we model user dynamics by introducing and learning a transition matrix for each user’s latent vectors between consecutive time wind...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Multimodal Network Alignment | Proceedings of the 2017 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics

A multimodal network encodes relationships between the same set of nodes in multiple settings, and network alignment is a powerful tool for transferring information and insight between a pair of networks. We propose a method for multimodal network alignment that computes a matrix which indicates the alignment, but produces the result as a lowrank factorization directly. We then propose new meth...

متن کامل

Learning Linear Dynamical Systems from Multivariate Time Series: A Matrix Factorization Based Framework

The linear dynamical system (LDS) model is arguably the most commonly used time series model for real-world engineering and financial applications due to its relative simplicity, mathematically predictable behavior, and the fact that exact inference and predictions for the model can be done efficiently. In this work, we propose a new generalized LDS framework, gLDS, for learning LDS models from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016