Parameter optimization for intelligent phishing detection using Adaptive Neuro-Fuzzy

نویسنده

  • P. A. Barraclough
چکیده

Phishing attacks has been growing rapidly in the past few years. As a result, a number of approaches have been proposed to address the problem. Despite various approaches proposed such as feature-based and blacklist-based via machine learning techniques, there is still a lack of accuracy and real-time solution. Most approaches applying machine learning techniques requires that parameters are tuned to solve a problem, but parameters are difficult to tune to a desirable output. This study presents a parameter tuning framework, using adaptive Neuronfuzzy inference system with comprehensive data to maximize systems performance. Extensive experiment was conducted. During ten-fold cross-validation, the data is split into training and testing pairs and parameters are set according to desirable output and have achieved 98.74% accuracy. Our results demonstrated higher performance compared to other results in the field. This paper contributes new comprehensive data, novel parameter tuning method and applied a new algorithm in a new field. The implication is that adaptive neuron-fuzzy system with effective data and proper parameter tuning can enhance system performance. The outcome will provide a new knowledge in the field. Keywords—FIS; Intelligent phishing detection; fuzzy inference system; neuro-fuzzy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Security for Phishing Online using Adaptive Neuro Fuzzy Systems

Anti-phishing detection solutions employed in industry use blacklist-based approaches to achieve low falsepositive rates, but blacklist approaches utilizes website URLs only. This study analyses and combines phishing emails and phishing web-forms in a single framework, which allows feature extraction and feature model construction. The outcome should classify between phishing, suspicious, legit...

متن کامل

Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms

The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...

متن کامل

Adaptive Interference Signal Processing with Intelligent Neuro-Fuzzy Approach

An intelligent learning-based approach using neural network and fuzzy logic to the problem of interference canceling is proposed in the paper. The famous signal-processing structure of adaptive noise canceling is used for the research of interference signal canceling, in which a neuro-fuzzy system is used as the adaptive notch filter. Four T-S fuzzy rules are in the neuro-fuzzy filter. The filt...

متن کامل

An Efficient Approach Based on Neuro-Fuzzy for Phishing Detection

In the Internet era, the online trading of various fields is growing quickly. As a result, cyber crime is increasing constantly. Phishing is a new type of crime aimed at stealing user information via these fake web pages. Most of these phishing web pages look similar to the real web pages in terms of website interface and uniform resource locator (URL) address. Many techniques have been propose...

متن کامل

Predicting Unconfined Compressive Strength of Intact Rock Using New Hybrid Intelligent Models

Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014