Efficient quadrature-free high-order spectral volume method on unstructured grids: Theory and 2D implementation

نویسندگان

  • Rob Harris
  • Zhi Jian Wang
  • Yen Liu
چکیده

An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. For SV interfaces, a quadrature-free approach is compared with the Gauss quadrature approach to further evaluate the accuracy and efficiency. A simplified treatment of curved boundaries is also presented that avoids the need to store a separate reconstruction for each boundary cell. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and non-linear advection equations, and the Euler equations. Several well known inviscid flow test cases are utilized to show the effectiveness of the simplified curved boundary representation. 2007 Elsevier Inc. All rights reserved. MSC: 65M60; 65M70; 35L65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Implementation of High-Order Spectral Volume Method for Multidimensional Conservation Laws on Unstructured Grids

An efficient implementation of the high-order spectral volume (SV) method is presented for multidimensional conservation laws on unstructured grids. In the SV method, each simplex grid cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation,...

متن کامل

Efficient Quadrature-Free 3D High-Order Spectral Volume Method on Unstructured Grids

The high-order spectral volume (SV) method has been extended for solving 3D hyperbolic conservation laws, and its implementation using an efficient quadrature-free approach has been performed to achieve high efficiency while maintaining accuracy. In the SV method, in order to perform a high-order polynomial reconstruction, each simplex cell – called a spectral volume (SV) – is partitioned into ...

متن کامل

The Spectral Difference Method for the 2D Euler Equations on Unstructured Grids

An efficient, high-order, conservative method named the spectral difference method has been developed recently for conservation laws on unstructured grids. It combines the best features of structured and unstructured grid methods to achieve high computational efficiency and geometric flexibility; it utilizes the concept of discontinuous and high-order local representations to achieve conservati...

متن کامل

Spectral (Finite) Volume Method forConservation Laws on Unstructured GridsBasic Formulation

A high-order, conservative, yet efficient method named the spectral volume (SV) method is developed for conservation laws on unstructured grids. The concept of a “spectral volume” is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multidomain spectral methods. Each spectral volume is further subdivided into control volumes, and cell-averaged data...

متن کامل

Free Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method

This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008