Hydrodynamic dispersion within porous biofilms.
نویسندگان
چکیده
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport.
منابع مشابه
Simulation Models, GIS and Nonpoint-Source Pollution (I)
An analytical solution describing the transport of dissolved substances in heterogeneous porous media with an asymptotic distance-dependent dispersion relationship has been developed. The solution has a dispersion function which is linear near the origin (i.e., for short travel distances) and approaches an asymptotic value as the travel distance becomes infinite. This solution can be used to ch...
متن کاملDispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity
The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...
متن کاملFailed escape: solid surfaces prevent tumbling of Escherichia coli.
Understanding how bacteria move close to surfaces is crucial for a broad range of microbial processes including biofilm formation, bacterial dispersion, and pathogenic infections. We used digital holographic microscopy to capture a large number (>10(3)) of three-dimensional Escherichia coli trajectories near and far from a surface. We found that within 20 μm from a surface tumbles are suppress...
متن کاملA 3-D Hydrodynamic Dispersion Model for Modeling Tracer Transport in Geothermal Reservoirs
A 3-D hydrodynamic dispersion model for tracer transport is developed and implemented into the TOUGH2 EOS3 (T2R3D) module. The model formulation incorporates a full dispersion tensor, based on a 7-D velocity field with a 3-D, irregular grid in a heterogeneous geological system. Two different weighting schemes are proposed for spatial average of 7 D velocity fields and concentration gradients to...
متن کاملA web of streamers: biofilm formation in a porous microfluidic device.
Using a microfabricated porous media mimic platform, we investigated how fluid flow influences the formation of filamentous structures, known as streamers, between porous media structures. We demonstrate how hydrodynamics govern the formation, morphology and the distribution of these biofilm streamers in the device. Our work establishes that, under favorable hydrodynamic conditions, streamers c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2013