Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex.
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), which convert glucose 6-phosphate plus UDP-glucose to trehalose, are part of the trehalose synthase complex. In addition to the TPS1 (previously also called GGS1, CIF1, BYP1, FDP1, GLC6, and TSS1) and TPS2 (also described as HOG2 and PFK3) gene products, this complex also contains a regulatory subunit encoded by TSL1. We have constructed a set of isogenic strains carrying all possible combinations of deletions of these three genes and of TPS3, a homologue of TSL1 identified by systematic sequencing. Deletion of TPS1 totally abolished TPS activity and measurable trehalose, whereas deletion of any of the other genes in most cases reduced both. Similarly, deletion of TPS2 completely abolished TPP activity, and deletion of any of the other genes resulted in a reduction of this activity. Therefore, it appears that all subunits are required for optimal enzymatic activity. Since we observed measurable trehalose in strains lacking all but the TPS1 gene, some phosphatase activity in addition to Tps2 can hydrolyze trehalose 6-phosphate. Deletion of TPS3, in particular in a tsl1Delta background, reduced both TPS and TPP activities and trehalose content. Deletion of TPS2, TSL1, or TPS3 and, in particular, of TSL1 plus TPS3 destabilized the trehalose synthase complex. We conclude that Tps3 is a fourth subunit of the complex with functions partially redundant to those of Tsl1. Among the four genes studied, TPS1 is necessary and sufficient for growth on glucose and fructose. Even when overproduced, none of the other subunits could take over this function of Tps1 despite the homology shared by all four proteins. A portion of Tps1 appears to occur in a form not bound by the complex. Whereas TPS activity in the complex is inhibited by Pi, Pi stimulates the monomeric form of Tps1. We discuss the possible role of differentially regulated Tps1 in a complex-bound or monomeric form in light of the requirement of Tps1 for trehalose production and for growth on glucose and fructose.
منابع مشابه
Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock.
Synthesis of trehalose in the yeast Saccharomyces cerevisiae is catalysed by the trehalose-6-phosphate (Tre6P) synthase/phosphatase complex, which is composed of at least three different subunits encoded by the genes TPS1, TPS2, and TSL1. Previous studies indicated that Tps1 and Tps2 carry the catalytic activities of trehalose synthesis, namely Tre6P synthase (Tps1) and Tre6P phosphatase (Tps2)...
متن کاملAGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae.
The trehalose content in Saccharomyces cerevisiae can be significantly manipulated by including trehalose at an appropriate level in the growth medium. Its uptake is largely dependent on the expression of AGT1, which encodes an alpha-glucoside transporter. The trehalose found in a tps1 mutant of trehalose synthase may therefore largely reflect its uptake from the enriched medium that was employed.
متن کاملAnalysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase.
In the yeast Saccharomyces cerevisiae, trehalose is synthesized by the trehalose synthase complex in two steps. The Tps1 subunit catalyses the formation of trehalose 6-phosphate (Tre6P), which is dephosphorylated by the Tps2 subunit. Tps1 also controls sugar influx into glycolysis; a tps1 deletion strain is therefore unable to grow on glucose. It is unclear whether this regulatory function of T...
متن کاملTrehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe.
Trehalose-6-P inhibits hexokinases in Saccharomyces cerevisiae (M. A. Blázquez, R. Lagunas, C. Gancedo, and J. M. Gancedo, FEBS Lett. 329:51-54, 1993), and disruption of the TPS1 gene (formerly named CIF1 or FDP1) encoding trehalose-6-P synthase prevents growth in glucose. We have found that the hexokinase from Schizosaccharomyces pombe is not inhibited by trehalose-6-P even at a concentration ...
متن کاملDisruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity.
Preparations of the trehalose-6-phosphate synthase/phosphatase complex from Saccharomyces cerevisiae contain three polypeptides with molecular masses 56, 100 and 130 kDa, respectively. Recently, we have cloned the gene for the 56-kDa subunit of this complex (TPS1) and found it to be identical with CIF1, a gene essential for growth on glucose and for the activity of trehalose-6-phosphate synthas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 50 شماره
صفحات -
تاریخ انتشار 1998