Genetic enhancement of behavioral itch responses in mice lacking phosphoinositide 3-kinase-γ (PI3Kγ)

نویسندگان

  • Bolam Lee
  • Giannina Descalzi
  • Jinhee Baek
  • Jae-Ick Kim
  • Hye-Ryeon Lee
  • Kyungmin Lee
  • Bong-Kiun Kaang
  • Min Zhuo
چکیده

Phosphoinositide 3-kinases (PI3Ks) are important for synaptic plasticity and various brain functions. The only class IB isoform of PI3K, PI3Kγ, has received the most attention due to its unique roles in synaptic plasticity and cognition. However, the potential role of PI3Kγ in sensory transmission, such as pain and itch has not been examined. In this study, we present the evidence for the first time, that genetic deletion of PI3Kγ enhanced scratching behaviours in histamine-dependent and protease-activated receptor 2 (PAR-2)-dependent itch. In contrast, PI3Kγ-deficient mice did not exhibit enhanced scratching in chloroquine-induced itch, suggesting that PI3Kγ selectively contributes to certain types of behavioal itch response. Furthermore, PI3Kγ-deficient mice exhibited normal acute nociceptive responses to thermal and mechanical noxious stimuli. Behavioral licking responses to intraplantar injections of formalin and mechanical allodynia in a chronic inflammatory pain model (CFA) were also not affected by PI3Kγ gene deletion. Our findings indicate that PI3Kγ selectively contributes to behavioral itching induced by histamine and PAR-2 agonist, but not chloroquine agonist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of phosphoinositide 3-kinase γ attenuates inflammation, obesity, and cardiovascular risk factors.

Phosphoinositide 3-kinase γ (PI3Kγ) plays a central role in inflammation, allergy, cardiovascular, and metabolic disease. Obesity is accompanied by chronic, low-grade inflammation. As PI3Kγ plays a major role in leukocyte recruitment, targeting of PI3Kγ has been considered to be a strategy for attenuating progression of obesity to insulin resistance and type 2 diabetes. Indeed, PI3Kγ null mice ...

متن کامل

Phosphoinositide 3-kinase γ protects against catecholamine-induced ventricular arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases.

BACKGROUND Phosphoinositide 3-kinase γ (PI3Kγ) signaling engaged by β-adrenergic receptors is pivotal in the regulation of myocardial contractility and remodeling. However, the role of PI3Kγ in catecholamine-induced arrhythmia is currently unknown. METHODS AND RESULTS Mice lacking PI3Kγ (PI3Kγ(-/-)) showed runs of premature ventricular contractions on adrenergic stimulation that could be resc...

متن کامل

Noncanonical regulation of insulin-mediated ERK activation by phosphoinositide 3-kinase γ

Classically Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in extracellular signal-regulated kinase (ERK) activation following G-protein coupled receptor (GPCR) activation. Knock-down of PI3Kγ unexpectedly resulted in loss of ERK activation to receptor tyrosine kinase agonists such as epidermal growth factor or insulin. Mouse embryonic fibroblasts (MEFs) or primary adult cardiac fibrob...

متن کامل

Phosphoinositide 3-kinase gamma controls inflammation-induced myocardial depression via sequential cAMP and iNOS signalling.

AIMS Sepsis-induced myocardial depression (SIMD), an early and frequent event of infection-induced systemic inflammatory response syndrome (SIRS), is characterized by reduced contractility irrespective of enhanced adrenergic stimulation. Phosphoinositide-3 kinase γ (PI3Kγ) is known to prevent β-adrenergic overstimulation via its scaffold function by activating major cardiac phosphodiesterases a...

متن کامل

Phosphoinositide 3-kinase γ: a key modulator in inflammation and allergy

Chronic inflammation and allergy involve the activation of tissue-resident cells and, later on, the invasion of effector cells. We have previously shown that the loss of phosphoinositide 3-kinase (PI3K) γ impairs chemokine-dependent migration of neutrophils and macrophages both in vitro and in vivo. On the other hand, PI3Kγ is not required either during phagocytic processes or in the activation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011