Stein operators for product distributions, with applications
نویسندگان
چکیده
We build upon recent advances on the distributional aspect of Stein’s method to propose a novel and flexible technique for computing Stein operators for random variables that can be written as products of independent random variables. We show that our results are valid for a wide class of distributions including normal, beta, variance-gamma, generalized gamma and many more. Our operators are kth degree differential operators with polynomial coefficients; they are easy to obtain even when the target density bears no explicit handle. We apply our toolkit to derive a new formula for the density of the product of k independent symmetric variance-gamma distributed random variables, and to study the asymptotic behaviour of the K-distribution under different regimes; this has implications in the analysis of radar signal data. AMS classification: 60E15, 26D10, 60B10
منابع مشابه
Upper bounds for Stein-type operators
We present sharp bounds on the supremum norm of DjSh for j ≥ 2, where D is the differential operator and S the Stein operator for the standard normal distribution. The same method is used to give analogous bounds for the exponential, Poisson and geometric distributions, with D replaced by the forward difference operator in the discrete case. We also discuss applications of these bounds to the c...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملRecurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملOrdered Weighted Averaging Operators and their Generalizations with Applications in Decision Making
The definition of ordered weighted averaging (OWA) operators and their applications in decision making are reviewed. Also, some generalizations of OWA operators are studied and then, the notion of 2-symmetric OWA operators is introduced. These generalizations are illustrated by some examples.
متن کاملExtended Jacobi and Laguerre Functions and their Applications
The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...
متن کامل