A Comparison of Hydroxyl Radical and Hydrogen Peroxide Generation in Ambient Particle Extracts and Laboratory Metal Solutions.

نویسندگان

  • Huiyun Shen
  • Cort Anastasio
چکیده

Generation of reactive oxygen species (ROS) - including superoxide ((•)O(2) (-)), hydrogen peroxide (HOOH), and hydroxyl radical ((•)OH) - has been suggested as one mechanism underlying the adverse health effects caused by ambient particulate matter (PM). In this study we compare HOOH and (•)OH production from fine and coarse PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California, as well as from laboratory solutions containing dissolved copper or iron. Samples were extracted in a cell-free, phosphate-buffered saline (PBS) solution containing 50 μM ascorbate (Asc). In our laboratory solutions we find that Cu is a potent source of both HOOH and (•)OH, with approximately 90% of the electrons that can be donated from Asc ending up in HOOH and (•)OH after 4 h. In contrast, in Fe solutions there is no measurable HOOH and only a modest production of (•)OH. Soluble Cu in the SJV PM samples is also a dominant source of HOOH and (•)OH. In both laboratory copper solutions and extracts of ambient particles we find much more production of HOOH compared to (•)OH: e.g., HOOH generation is approximately 30 - 60 times faster than (•)OH generation. The formation of HOOH and (•)OH are positively correlated, with roughly 3 % and 8 % of HOOH converted to (•)OH after 4 and 24 hr of extraction, respectively. Although the SJV PM produce much more HOOH than (•)OH, since (•)OH is a much stronger oxidant it is unclear which species might be more important for oxidant-mediated toxicity from PM inhalation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of Radicals Generated in a Sonicator

The hydroxyl radical (OH•) is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA) and potassium iodide dosimetry were used to quantify and inve...

متن کامل

In vitro antioxidant effects of barberry fruit extracts

A vast majority of the studies addressing the free radicals including hydroxyl radical is a damage compound of biochemical molecules such as DNA, proteins and lipids. When free radicals specially hydroxyl radical are not adequately removed from the body, it may damage biological macromolecules, leading to a variety of disease occurs. Therefore, the body should be protected by an enzymatic or no...

متن کامل

The role of iron in diabetes and its complications: response to Swaminathan et al.

The central importance of iron in the pathophysiology of disease is derived from the ease with which iron is reversibly oxidized and reduced. This property, while essential for its metabolic functions, makes iron potentially hazardous because of its ability to participate in the generation of powerful oxidant species such as hydroxyl radical (1). Oxygen normally accepts four electrons and is co...

متن کامل

The Kinetics and Mechanism of Oxidation of Isopropanol with the Hydrogen Peroxide–Vanadate Ion–Pyrazine-2-Carboxylic Acid System

The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA) was found to effectively catalyze the oxidation of isopropanol to acetone with hydrogen peroxide. The electronic spectra of solutions and the kinetics of oxidation were studied. The conclusion was drawn that the rate-determining stage of the reaction was the decomposition of the vanadium(V) diperoxo complex with PCA, and the...

متن کامل

Bactericidal effect of hydroxyl radicals generated from a low concentration hydrogen peroxide with ultrasound in endodontic treatment

One approach to enhance the disinfection of root canals in endodontic treatment is ultrasonic irrigation with sodium hypochlorite. Reactive oxygen species, such as hydroxyl radical, are generated by biological defense systems to kill invading bacteria. Ultrasonic irrigation with hydrogen peroxide may be a promising option to increase hydroxyl radical generation. We examined the bactericidal eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Atmospheric environment

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2012