Valuations and Busemann–Petty Type Problems
نویسنده
چکیده
Projection and intersection bodies define continuous and GL(n) contravariant valuations. They played a critical role in the solution of the Shephard problem for projections of convex bodies and its dual version for sections, the Busemann– Petty problem. We consider the question whether ΦK ⊆ ΦL implies V (K) ≤ V (L), where Φ is a homogeneous, continuous operator on convex or star bodies which is an SO(n) equivariant valuation. Important previous results for projection and intersection bodies are extended to a large class of valuations.
منابع مشابه
Comparison of Volumes of Convex Bodies in Real, Complex, and Quaternionic Spaces
The classical Busemann-Petty problem (1956) asks, whether origin-symmetric convex bodies in R with smaller hyperplane central sections necessarily have smaller volumes. It is known, that the answer is affirmative if n ≤ 4 and negative if n > 4. The same question can be asked when volumes of hyperplane sections are replaced by other comparison functions having geometric meaning. We give unified ...
متن کاملThe Generalized Busemann-petty Problem with Weights
This question is known as the generalized Busemann-Petty problem. For i = n − 1, the problem was posed by Busemann and Petty [2] in 1956. It has a long history, and the answer is affirmative if and only if n ≤ 4; see [3], [8], [11]. For the generalized Busemann-Petty problem the following statements are known. If i = 2, n = 4, an affirmative answer follows from that in the case i = n − 1. If 3 ...
متن کامل2 1 Ju n 20 04 THE BUSEMANN - PETTY PROBLEM FOR ARBITRARY MEASURES
Abstract. The aim of this paper is to study properties of sections of convex bodies with respect to different types of measures. We present a formula connecting the Minkowski functional of a convex symmetric body K with the measure of its sections. We apply this formula to study properties of general measures most of which were known before only in the case of the standard Lebesgue measure. We ...
متن کاملThe Australian Journal of Mathematical Analysis and Applications
The norm defined by Busemann’s inequality establishes a class of star body intersection body. This class of star body plays a key role in the solution of Busemann-Petty problem. In 2003, Giannapoulos [1] defined a norm for a new class of half-section. Based on this norm, we give a geometric generalization of Busemann-Petty problem, and get its answer as a result.
متن کاملBusemann - Petty problem on sections of convex bodies
The Busemann-Petty problem asks whether origin-symmetric convex bodies in R n with smaller central hyperplane sections necessarily have smaller n-dimensional volume. It is known that the answer is affirmative if n ≤ 4 and negative if n ≥ 5. In this article we modify the assumptions of the original Busemann-Petty problem to guarantee the affirmative answer in all dimensions.
متن کامل