Monotone Cq Algorithm for Weak Relatively Nonexpansive Mappings and Maximal Monotone Operators in Banach Spaces
نویسندگان
چکیده
The purpose of this article is to prove strong convergence theorems for weak relatively nonexpansive mapping which is firstly presented in this article. In order to get the strong convergence theorems for weak relatively nonexpansive mapping, the monotone CQ iteration method is presented and is used to approximate the fixed point of weak relatively nonexpansive mapping, therefore this article apply above results to prove the strong convergence theorems of zero point for maximal monotone operators in Banach spaces. Noting that, the CQ iteration method can be used for relatively nonexpansive mapping but it can not be used for weak relatively nonexpansive mapping. However, the monotone CQ method can be used for weak relatively nonexpansive mapping. The results of this paper modify and improve the results of S.Matsushita and W.Takahashi, and some others. AMS Mathematics Subject Classification : 47H05, 47H09, 47H10.
منابع مشابه
A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملStrong Convergence Theorems of Multivalued Nonexpansive Mappings and Maximal Monotone Operators in Banach Spaces
In this paper, we prove a strong convergence theorem for fixed points of sequence for multivalued nonexpansive mappings and a zero of maximal monotone operator in Banach spaces by using the hybrid projection method. Our results modify and improve the recent results in the literatures.
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملStrong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...
متن کامل