Comparisons among Some Estimators in Misspecified Linear Models with Multicollinearity
نویسنده
چکیده
In this paper we deal with comparisons among several estimators available in situations of multicollinearity (e.g., the r k class estimator proposed by Baye and Parker, the ordinary ridge regression (ORR) estimator, the principal components regression (PCR) estimator and also the ordinary least squares (OLS) estimator) for a misspecified linear model where misspecification is due to omission of some relevant explanatory variables. These comparisons are made in terms of the mean square error (mse) of the estimators of regression coefficients as well as of the predictor of the conditional mean of the dependent variable. It is found that under the same conditions as in the true model, the superiority of the r k class estimator over the ORR, PCR and OLS estimators and those of the ORR and PCR estimators over the OLS estimator remain unchanged in the misspecified model. Only in the case of comparison between the ORR and PCR estimators, no definite conclusion regarding the mse dominance of one over the other in the misspecified model can be drawn.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملStochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models
In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...
متن کاملWeighted least squares estimators in possibly misspecified nonlinear regression
The behavior of estimators for misspecified parametric models has been well studied. We consider estimators for misspecified nonlinear regression models, with error and covariates possibly dependent. These models are described by specifying a parametric model for the conditional expectation of the response given the covariates. This is a parametric family of conditional constraints, which makes...
متن کاملSimple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables.
Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-...
متن کاملبهکارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر همخطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان
Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...
متن کامل