Increased reactive oxygen species contributes to kidney injury in mineralocorticoid hypertensive rats.

نویسندگان

  • L Jin
  • R A Beswick
  • T Yamamoto
  • T Palmer
  • T A Taylor
  • J S Pollock
  • D M Pollock
  • M W Brands
  • R C Webb
چکیده

Hypertension is associated with increased reactive oxygen species (ROS). Renal ROS production and their effects on renal function have never been investigated in mineralocorticoid hypertensive rats. In this study we hypothesized that increased ROS production in kidneys from deoxycorticosterone (DOCA)-salt rats contributes to adverse renal morphological changes and impaired renal function in DOCA-salt hypertensive rats. We also determined whether ROS-induced renal injury was dependent on blood pressure. DOCA-salt hypertensive rats exhibited a marked increase in blood pressure, renal ROS production, glomerular and tubular lesions, and microalbuminuria compared to sham rats. Treatment of DOCA-salt hypertensive rats with apocynin for 28 days resulted in attenuation of systolic blood pressure and improvement of renal morphology. Renal superoxide level in DOCA-salt rats was 215% of sham-operated rats and it was significantly decreased to 140% with apocynin treatment. Urinary protein level was decreased from 27 +/- 3 mg/day in DOCA-salt hypertensive rats to 9 +/- 2 mg/day. 28 days of Vitamin E treatment also reduced renal injury in regard to urinary protein level and renal morphology but had no effect on blood pressure in DOCA-salt rats. Increased urinary 8-isoprostane, a marker for oxidative stress, in DOCA-salt hypertensive rats (55 +/- 8 ng/day) was diminished by vitamin E treatment (24 +/- 6 ng/day). These data suggest that renal injury characteristic of mineralocorticoid hypertension is associated with oxidative stress and is partly independent of blood pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone and renal injury.

Our recent efforts have been focused on the mechanisms responsible for the progression of aldosterone-induced renal injury. We have demonstrated in rats that chronic treatment with aldosterone (0.75 micro g/H, SC) and 1% NaCl (in drinking solution) results in severe proteinuria and glomerular injury, characterized by cell proliferation and mesangial matrix expansion. Increased renal cortical NA...

متن کامل

Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury

Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Al...

متن کامل

Oxidative Stress-Induced Glomerular Mineralocorticoid Receptor Activation Limits the Benefit of Salt Reduction in Dahl Salt-Sensitive Rats

BACKGROUND Mineralocorticoid receptor (MR) antagonists attenuate renal injury in salt-sensitive hypertensive rats with low plasma aldosterone levels. We hypothesized that oxidative stress causes MR activation in high-salt-fed Dahl salt-sensitive rats. Furthermore, we determined if MR activation persisted and induced renal injury, even after switching from a high- to a normal-salt diet. METHOD...

متن کامل

Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats.

Studies were performed to test the hypothesis that reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) contribute to the pathogenesis of aldosterone/salt-induced renal injury. Rats were given 1% NaCl to drink and were treated with one of the following combinations for 6 weeks: vehicle (0.5% ethanol, SC, n=6); aldosterone (0.75 microg/H, SC, n=8); aldosterone plus a selecti...

متن کامل

Long-term antioxidant administration attenuates mineralocorticoid hypertension and renal inflammatory response.

We previously reported increased monocyte/macrophage infiltration, reactive oxygen species accumulation, and nuclear factor-kappaB (NF-kappaB) activation in mineralocorticoid (deoxycorticosterone acetate [DOCA]) hypertensive rats. We tested the hypothesis that prolonged antioxidant administration inhibits superoxide accumulation, lowers blood pressure, and reduces NF-kappaB activation in DOCA-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physiology and pharmacology : an official journal of the Polish Physiological Society

دوره 57 3  شماره 

صفحات  -

تاریخ انتشار 2006