A Novel Approach to Extracting Casing Status Features Using Data Mining

نویسندگان

  • Jikai Chen
  • Haoyu Li
  • Yanjun Wang
  • Ronghua Xie
  • Xingbin Liu
چکیده

Casing coupling location signals provided by the magnetic localizer in retractors are typically used to ascertain the position of casing couplings in horizontal wells. However, the casing coupling location signal is usually submerged in noise, which will result in the failure of casing coupling detection under the harsh logging environment conditions. The limitation of Shannon wavelet time entropy, in the feature extraction of casing status, is presented by analyzing its application mechanism, and a corresponding improved algorithm is subsequently proposed. On the basis of wavelet transform, two derivative algorithms, singular values decomposition and Tsallis entropy theory, are proposed and their physics meanings are researched. Meanwhile, a novel data mining approach to extract casing status features with Tsallis wavelet singularity entropy is put forward in this paper. The theoretical analysis and experiment results indicate that the proposed approach can not only extract the casing coupling features accurately, but also identify the characteristics of perforation and local corrosion in casings. The innovation of the paper is in the use of simple wavelet entropy algorithms to extract the complex nonlinear logging signal features of a horizontal well tractor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Extracting Distinctive Features of Swine (H1N1) Flu through Data Mining Clinical Documents

Early recognition of distinguishing patterns of a novel pandemic disease is important. We introduce a methodological approach based on popular data mining techniques to extract key features and temporal patterns of swine (h1n1) flu that is discriminated from swine flu like symptoms.

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach

The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory informationthat may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu–Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has beenused. The re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014