Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration.

نویسندگان

  • Jean Morisset
  • JoséCristobal Aliaga
  • Ezéquiel L Calvo
  • Judith Bourassa
  • Nathalie Rivard
چکیده

Pancreatic growth occurs after CCK, CCK-induced pancreatitis, and pancreatectomy; the mechanisms involved remain unknown. This study evaluates mitogen-activated protein kinase (MAPK) activation and expression of cell cycle regulatory proteins after pancreatectomy to understand the cellular and molecular mechanisms involved in pancreas regeneration. Rats were killed 1-12 days after pancreatectomy, and p42/p44 MAPK activation, expression of the cyclins D and E, cyclin-dependent kinase (Cdk)-2 activity, retinoblastoma protein (pRb) hyperphosphorylation, and expression of the cyclin kinase inhibitors p15, p21, and p27 were examined. Pancreatic remnants exhibited sustained p42/p44 MAPK activation within 8 h. Cyclins D1 and E showed maximal expression after 2 and 6 days, coinciding with maximal hyperphosphorylation of pRb and Cdk2 activity. The expression of p15 vanished after 12 h, p27 disappeared gradually, and p21 increased early. The p27 complexed with Cdk2 dissociated after 2 days, whereas p21 associated in a reverse fashion. In conclusion, sustained activation of p42/p44 MAPKs and Cdk2 along with overexpression of cyclins D1 and E and reduction of p15 and p27 cyclin inhibitors occurred early after pancreatectomy and are active factors involved in signaling that leads to pancreas regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p42/p44 mitogen-activated protein kinases activation is required for the insulin-like growth factor-I/insulin induced proliferation, but inhibits differentiation, in rat fetal brown adipocytes.

Insulin-like growth factor I (IGF-I)/insulin induced cytosolic p42/p44 mitogen-activated protein kinase (MAPK) activation in a time-dependent manner in fetal brown adipocytes, reaching a maximum at 5 min. Concurrently, nuclear p42/p44 MAPKs were also activated by IGF-I and insulin. This cytosolic and nuclear MAPK activation was totally prevented by pretreatment with the MAPK kinase (MEK1) inhib...

متن کامل

The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases.

We previously reported that nuclear translocation is essential for p42/p44 MAPKs (ERKs) mitogenic signaling. Here we show that, during long-term stimulation, p42/p44 MAPKs become inactive while they accumulate in the nucleus. This inactivation was monitored by phospho-specific immunostaining and dephosphorylation of a nuclear p42/p44 MAPKs substrate, HIF-1 alpha. The phosphatases responsible fo...

متن کامل

PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits.

Using conscious rabbits, we examined the effect of ischemic preconditioning (PC) on p44 and p42 mitogen-activated protein kinases (MAPKs). We found that both isoforms contribute significantly to total MAPK activity in the heart (in-gel kinase assay: p44, 59 ± 1%; p42, 41 ± 1%). Ischemic PC (6 cycles of 4-min occlusion/4-min reperfusion) elicited a pronounced increase in total cellular MAPK acti...

متن کامل

AGI September 40/3

Aliaga, José Cristobal, Claude Deschênes, JeanFrançois Beaulieu, Ezéquiel L. Calvo, and Nathalie Rivard. Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am. J. Physiol. 277 (Gastrointest. Liver Physiol. 40): G631–G641, 1999.—The intracellular signaling pathways responsible for cell cycle arrest and establishment of differentiated c...

متن کامل

Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells.

The intracellular signaling pathways responsible for cell cycle arrest and establishment of differentiated cells along the gut axis remain largely unknown. In the present study, we analyzed the regulation of p42/p44 mitogen-activated protein kinase (MAPK) in the process of proliferation and differentiation of human intestinal cells. In vitro studies were done in Caco-2/15 cells, a human colon c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 277 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999