Evaluation of acoustic word embeddings
نویسندگان
چکیده
Recently, researchers in speech recognition have started to reconsider using whole words as the basic modeling unit, instead of phonetic units. These systems rely on a function that embeds an arbitrary or fixed dimensional speech segments to a vector in a fixed-dimensional space, named acoustic word embedding. Thus, speech segments of words that sound similarly will be projected in a close area in a continuous space. This paper focuses on the evaluation of acoustic word embeddings. We propose two approaches to evaluate the intrinsic performances of acoustic word embeddings in comparison to orthographic representations in order to evaluate whether they capture discriminative phonetic information. Since French language is targeted in experiments, a particular focus is made on homophone words.
منابع مشابه
Acoustic Word Embeddings for ASR Error Detection
This paper focuses on error detection in Automatic Speech Recognition (ASR) outputs. A neural network architecture is proposed, which is well suited to handle continuous word representations, like word embeddings. In a previous study, the authors explored the use of linguistic word embeddings, and more particularly their combination. In this new study, the use of acoustic word embeddings is exp...
متن کاملMulti-view Recurrent Neural Acoustic Word Embeddings
Recent work has begun exploring neural acoustic word embeddings—fixeddimensional vector representations of arbitrary-length speech segments corresponding to words. Such embeddings are applicable to speech retrieval and recognition tasks, where reasoning about whole words may make it possible to avoid ambiguous sub-word representations. The main idea is to map acoustic sequences to fixed-dimensi...
متن کاملA Comparison of Word Embeddings for the Biomedical Natural Language Processing
Background Neural word embeddings have been widely used in biomedical Natural Language Processing (NLP) applications as they provide vector representations of words capturing the semantic properties of words and the linguistic relationship between words. Many biomedical applications use different textual resources (e.g., Wikipedia and biomedical articles) to train word embeddings and apply thes...
متن کاملWord-Alignment-Based Segment-Level Machine Translation Evaluation using Word Embeddings
One of the most important problems in machine translation (MT) evaluation is to evaluate the similarity between translation hypotheses with different surface forms from the reference, especially at the segment level. We propose to use word embeddings to perform word alignment for segment-level MT evaluation. We performed experiments with three types of alignment methods using word embeddings. W...
متن کاملQuery-by-Example Search with Discriminative Neural Acoustic Word Embeddings
Query-by-example search often uses dynamic time warping (DTW) for comparing queries and proposed matching segments. Recent work has shown that comparing speech segments by representing them as fixed-dimensional vectors — acoustic word embeddings — and measuring their vector distance (e.g., cosine distance) can discriminate between words more accurately than DTW-based approaches. We consider an ...
متن کامل