A Particle Filtering Algorithm for Interactive POMDPs

نویسندگان

  • Prashant Doshi
  • Piotr Gmytrasiewicz
چکیده

Interactive POMDP (I-POMDP) is a stochastic optimization framework for sequential planning in multiagent settings. It represents a direct generalization of POMDPs to multiagent cases. Expectedly, I-POMDPs also suffer from a high computational complexity, thereby motivating approximation schemes. In this paper, we propose using a particle filtering algorithm for approximating the I-POMDP belief update process. Since the belief update is a key step in solving I-POMDPs, approximating it will reduce the time its takes to compute the solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Particle Filtering Based Approach to Approximating Interactive POMDPs

POMDPs provide a principled framework for sequential planning in single agent settings. An extension of POMDPs to multiagent settings, called interactive POMDPs (I-POMDPs), replaces POMDP belief spaces with interactive hierarchical belief systems which represent an agent’s belief about the physical world, about beliefs of the other agent(s), about their beliefs about others’ beliefs, and so on....

متن کامل

Monte Carlo Sampling Methods for Approximating Interactive POMDPs

Partially observable Markov decision processes (POMDPs) provide a principled framework for sequential planning in uncertain single agent settings. An extension of POMDPs to multiagent settings, called interactive POMDPs (I-POMDPs), replaces POMDP belief spaces with interactive hierarchical belief systems which represent an agent’s belief about the physical world, about beliefs of other agents, ...

متن کامل

Particle Filtering for Stochastic Control and Global Optimization

Title of dissertation: PARTICLE FILTERING FOR STOCHASTIC CONTROL AND GLOBAL OPTIMIZATION Enlu Zhou, Doctor of Philosophy, 2009 Dissertation directed by: Professor Steven I. Marcus Department of Electrical and Computer Engineering Professor Michael C. Fu Department of Decision, Operations, and Information Technologies This thesis explores new algorithms and results in stochastic control and glob...

متن کامل

Decayed Markov Chain Monte Carlo for Interactive POMDPs

To act optimally in a partially observable, stochastic and multi-agent environment, an autonomous agent needs to maintain a belief of the world at any given time. An extension of partially observable Markov decision processes (POMDPs), called interactive POMDPs (I-POMDPs), provides a principled framework for planning and acting in such settings. I-POMDP augments the POMDP beliefs by including m...

متن کامل

Individual Planning in Infinite-Horizon Multiagent Settings: Inference, Structure and Scalability

This paper provides the first formalization of self-interested planning in multiagent settings using expectation-maximization (EM). Our formalization in the context of infinite-horizon and finitely-nested interactive POMDPs (I-POMDP) is distinct from EM formulations for POMDPs and cooperative multiagent planning frameworks. We exploit the graphical model structure specific to I-POMDPs, and pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004