Glucocorticoids induce glutamine synthetase in folliculostellate cells of rat pituitary glands in vivo and in vitro.
نویسندگان
چکیده
Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamate metabolism in the central and peripheral nervous system. In this study GS activity was measured and the amount of immunoreactive GS (ir-GS) cells in the rat anterior pituitary gland was quantified as a function of age. In addition, the effects of GS inhibitors, glucocorticoid administration, and adrenalectomy on GS activity were examined. Some of the ir-GS cells were also immunoreactive for S100 protein (ir-S100) which is a known marker for folliculostellate cells (FS) in the anterior pituitary. FS cells expressing GS were first detected in 3-d-old rats, and this cell population, expressed as the immunostained cell area divided by a standard unit area, increased as a function of age. The percentages of FS cells also expressing GS were 0.2, 6.4, 25 and 74% at 3 d, 30 d, 60 d and 2 y of age, respectively. GS enzyme activity also increased in parallel with the increase of ir-GS cell population maturation. The subcutaneous injection of methionine sulphoximine, a GS and gamma-glutamylcysteine synthetase inhibitor, reduced pituitary GS activity by 83%, but increased the population of ir-GS cells 3.5-fold in 30-d-old rats. Buthionine sulphoximine, a specific inhibitor of y-glutamylcysteine synthetase, had little effect on GS activity or the ir-GS cell population. Neither methionine sulphoximine nor buthionine sulphoximine changed the population of ir-S100 protein cells (FS cells). Dexamethasone and hydrocortisone increased the population of ir-GS cells by 3.1 and 4.2-fold, respectively, within 12 h after administration. A significant increase of GS activity due to the injection of glucocorticoids was observed in the anterior pituitary, but not in the brain, retina or liver of immature rats. Adrenalectomy did not cause decrease of pituitary GS activity, and dexamethasone administration increased GS activity in both adrenalectomised and intact rats. In the monolayer culture of anterior pituitary cells, glucocorticoids increased GS activity by x 1.5, and methionine sulphoximine reduced the activity by over 94%. These results demonstrate that GS in folliculostellate cells is a glucocorticoid-inducible enzyme in vivo and in vitro, and that the age-dependent increase of GS activity is independent of endogenous adrenal glucocorticoids.
منابع مشابه
Pituitary adenylate cyclase-activating polypeptide, interleukin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary folliculostellate cells.
There is increasing evidence that hormones play an important role in the control of endothelial cell function and growth by regulating the production of vascular endothelial growth factor (VEGF). VEGF regulates vascular permeability and represents the most powerful growth factor for endothelial cells. In the normal anterior pituitary, VEGF has been detected only in folliculostellate (FS) cells....
متن کاملExpression of Neurotrophins in Adipose-derived Stem Cells during in vitro Culture and Posttransplantation in Parkinsonian Rat Model
Background: Adipose tissue stem cells (ASCs) cause faster repair of damaged tissue posttransplantation by releasing growth factors in neurodegenerative diseases. ASCs secrete factors in the culture medium called conditioned medium (CM) in vitro. This study investigated the expression of neurotrophin genes in vitro culture and transplant of ASCs in Parkinsonian rats. Materials and Methods: In th...
متن کاملEffects of different culture media on optimization of primary neuronal cell culture for in vitro models assay
Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...
متن کاملLactotrophs: The new and major source for VEGF secretion and the influence of ECM on rat pituitary function in vitro
Vascular endothelial growth factor (VEGF) plays a pivotal role in pituitary endocrine function by influencing fenestration and blood vessel growth. Folliculostellate (FS) cells, which represent only a small number of pituitary cells, are recognized to produce VEGF. Tissue sections and primary pituitary cell cultures from rat pituitary glands were performed to co-localize VEGF and pituitary lact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of anatomy
دوره 194 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1999