Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data.
نویسندگان
چکیده
Owing to the limited source of human skin (HS) and the ethical restrictions of using animals in experiments, in vitro skin equivalents are a possible alternative for conducting particle penetration experiments. The conditions for conducting penetration experiments with model particles, 15-nm gold nanoparticles (AuNP), through nonsealed skin equivalents are described for the first time. These conditions include experimental setup, sterility conditions, effective applied dose determination, skin sectioning, and skin integrity check. Penetration at different exposure times (two and 24 h) and after tissue fixation (fixed versus unfixed skin) are examined to establish a benchmark in comparison to HS in an attempt to get similar results to HS experiments presented earlier. Multiphoton microscopy is used to detect gold luminescence in skin sections. λ(ex)=800 nm is used for excitation of AuNP and skin samples, allowing us to determine a relative index for particle penetration. Despite the observed overpredictability of penetration into skin equivalents, they could serve as a first fast screen for testing the behavior of nanoparticles and extrapolate their penetration behavior into HS. Further investigations are required to test a wide range of particles of different physicochemical properties to validate the skin equivalent-human skin particle penetration relationship.
منابع مشابه
Mechanism and determinants of nanoparticle penetration through human skin.
The ability of nanoparticles to penetrate the stratum corneum was the focus of several studies. Yet, there are controversial issues available for particle penetration due to different experimental setups. Meanwhile, there is little known about the mechanism and determinants of their penetration. In this paper the penetration of four model gold nanoparticles of diameter 6 and 15 nm, differing in...
متن کاملInfluence of Dimethyl Sulfoxide as a Penetration Enhancer of Piroxicam Gel Through Biological Skin
Piroxicam is a non-steroidal anti-inflammatory agent which has an extensive use in rheumatic disorders. Since its skin penetration is still a subject for research, the aim of this study was to evaluate the effect of dimethyl sulfoxide on percutaneous penetration of piroxicam gel formulation through skin. In this study, as a model, two types of 0.5% piroxicam new gels, so called red and gr...
متن کاملExperimental Strategies for Investigating Passive and Ultrasound-enhanced Transdermal Drug Delivery
Transdermal drug delivery offers many advantages over traditional drug delivery methods. However, the natural resistance of the skin to drug permeation represents a major challenge that transdermal drug delivery needs to overcome in a safe and reversible manner. One method for enhancing transdermal drug delivery involves the application of ultrasound (US) to skin to physically overcome the skin...
متن کاملImpact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study.
Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this ...
متن کاملA Method for Quantification of Penetration of Nanoparticles through Skin Layers Using Near-Infrared Optical Imaging
Our study presents a new method for tracking nanoparticle penetration through different layers of the skin using near-infrared dye-loaded nanoparticles (hydrodynamic diameter = 156 nm) and optical imaging. The dye-loaded nanoparticles were mixed in a topical skin cream, applied to human cadaver skin and incubated either for three or 24 h post-application, skin tissue was clipped between glass s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2013