Ultralogic Unification for Collections of Physical Theories

نویسنده

  • Robert A. Herrmann
چکیده

Let {S′Ni | i ∈ IN} represent a set of consequence operators defined on a language Λ, where each member of {S′Ni | i ∈ IN} corresponds to a science-community physical theory and each Ni is a S′Nj -system for each j ∈ IN. It is shown that there exists a hyperfinite ultralogic U ∈ ∗Cf defined on all internal subsets of Λ such that U 6 = U, and, for each i, j ∈ IN, S Ni ( ∗Nj) = U( ∗Nj). For each internal Y ⊂ Λ, ⋃ { S Ni (Y ) | i ∈ IN} ⊂ U(Y ) ⊂ Λ. Further, if finite X ⊂ Λ, then ⋃ { S Ni (X) | i ∈ IN} ⊂ U(X), and if each member of {S′Ni | i ∈ IN} is a practical consequence operator, then ⋃ {S Ni (X) | i ∈ IN} ⊂ U(X), and, for each i, j ∈ IN, S Ni (Nj) = U(Nj). Standard unifications for physical theories are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The best possible unification for any collection of physical theories

We show that the set of all finitary consequence operators defined on any nonempty language is a join-complete lattice. This result is applied to various collections of physical theories to obtain an unrestricted standard supremum unification. An unrestricted hyperfinite ultralogic unification for sets of physical theories is also obtained. 1. Introduction. A restricted hyperfinite ultralogic u...

متن کامل

An Ultralogic Unification for All Physical Theories

In this paper, the set of all physical theories is represented by a countable collection of consequence operators {SVNj | j ∈ IN} defined on a language Λ. It is established that in the Grundlegend Structure, a nonstandard structure, there exists an injection S such that for any significant natural-system representation W ⊂ Λ, SW is an ultralogic such that ⋃ {SVNj (W) | j ∈ IN} = SW( W) ∩Λ.

متن کامل

Unification for Collections of Physical Theories

Let {S′Ni | i ∈ IN} represent a set of consequence operators defined on a language Λ, where each member of {S′Ni | i ∈ IN} corresponds to a science-community physical theory and each Ni is a S′Nj -system for each j ∈ IN. It is shown that there exists a hyperfinite ultralogic U ∈ ∗Cf defined on all internal subsets of Λ such that U 6 = U, and, for each i, j ∈ IN, S Ni ( ∗Nj) = U( ∗Nj). For each ...

متن کامل

An Ultimate Hyperfinite Ultralogic Unification for Collections of Physical Theories

Let {S′Ni | i ∈ IN} represent a set of consequence operators defined on a language Λ, where each member of {S′Ni | i ∈ IN} corresponds to a science-community physical theory and each Ni is a S′Nj -system for each j ∈ IN. It is shown that there exists a hyperfinite ultralogic U ∈ ∗Cf defined on all internal subsets of Λ such that U 6 = U, and, for each i, j ∈ IN, S Ni ( ∗Nj) = U( ∗Nj). For each ...

متن کامل

An Ultimate Hyperfinite Ultralogic Unification for all Physical Theories

Let {S′Ni | i ∈ IN} represent a set consequence operators defined on the language Λ, where each member of {S′Ni | i ∈ IN} corresponds to a science-community physical theory. It is shown that there exists a hyperfinite ultralogic U ∈ ∗Cf defined on all internal subsets of Λ such that U 6 = U, and, for each i ∈ IN, S Ni ( ∗Ni) = U( ∗Ni). For each internal Y ⊂ Λ, ⋃ { S Ni (Y ) | i ∈ IN} ⊂ U(Y ) ⊂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004