GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors.

نویسندگان

  • A V Paternain
  • M T Herrera
  • M A Nieto
  • J Lerma
چکیده

We have performed nonradioactive double in situ hybridization to study the expression of glutamic acid decarboxylase and GluR6 or GluR5 subunits in hippocampal slices. Our results indicate that although GluR6 is primarily expressed by pyramidal cells and dentate granule neurons and GluR5 is prominently expressed in nonpyramidal cells, there is a significant population of GABAergic interneurons that coexpress the two glutamate receptor subunits. To assess whether the two subunits could coassemble to form heteromeric receptors, we studied the electrophysiological responses when both subunits were coexpressed in HEK293 cells. Responses evoked by rapid application of either glutamate, (RS)-alpha-amino-3-hydroxy-5-tert-butyl-4-isoxazolepropionic acid (ATPA) the selective agonist of GluR5 receptors), and AMPA in cells cotransfected with GluR6(R) and GluR5(Q) presented a similar degree of outward rectification. This can only be attributed to the fact that all receptors have at least one GluR6(R) subunit in their structure, conferring outward rectification, and at least one GluR5(Q) subunit to confer sensitivity to ATPA and AMPA. More than 80% of the receptors expressed by a single cell were found to be GluR5/R6 heteromers, presenting different desensitization and gating properties to homomeric R6 receptors. These results lead us to believe that a population of interneurons in the hippocampus express receptors made up of both GluR5 and GluR6 subunits and provide evidence for a greater diversity of kainate receptors in the brain than previously thought, that may account for a higher functional complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7.

In the CNS kainate subtype glutamate receptors (GluRs) are likely to be heteromeric assemblies containing multiple gene products. However, although recombinant kainate receptors from the GluR5-GluR7 gene family have been studied extensively in their homomeric forms, there have been no tests to determine whether these subunits can coassemble with each other. We used the GluR5 selective agonists ...

متن کامل

Kainate receptor subunits expressed in single cultured hippocampal neurons: Molecular and functional variants by RNA editing

To determine the kainate receptor subunits that are found in native kainate receptors, we have applied a multiplex PCR of cDNAs reverse transcribed from mRNA harvested from single cultured hippocampal neurons after electrophysiological recording. We found that all the cells showing rapidly desensitizing currents in response to kainate express the GluR6 subunit mRNA, and that some of them also e...

متن کامل

Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations.

Kainate receptors (KARs) play an important role in synaptic physiology, plasticity, and pathological phenomena such as epilepsy. However, the physiological implications for neuronal networks of the distinct expression patterns of KAR subunits are unknown. Using KAR knock-out mice, we show that subunits glutamate receptor (GluR) 5 and GluR6 play distinct roles in kainate-induced gamma oscillatio...

متن کامل

A mosaic of functional kainate receptors in hippocampal interneurons.

Although some physiological functions of kainate receptors (KARs) still remain unclear, recent advances have highlighted a role in synaptic physiology. In hippocampal slices, kainate depresses GABA-mediated synaptic inhibition and increases the firing rate of interneurons. However, the sensitivity to agonists of these responses differs, suggesting that the presynaptic and somatic KARs have a di...

متن کامل

Subunit Composition of Kainate Receptors in Hippocampal Interneurons

Kainate receptor activation affects GABAergic inhibition in the hippocampus by mechanisms that are thought to involve the GluR5 subunit. We report that disruption of the GluR5 subunit gene does not cause the loss of functional KARs in CA1 interneurons, nor does it prevent kainate-induced inhibition of evoked GABAergic synaptic transmission onto CA1 pyramidal cells. However, KAR function is abol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2000