Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations.

نویسندگان

  • Adam C Silver
  • Yoshitomo Kikuchi
  • Amin A Fadl
  • Jian Sha
  • Ashok K Chopra
  • Joerg Graf
چکیده

Animals house a community of bacterial symbionts in their digestive tracts that contribute to their well being. The medicinal leech, Hirudo verbana, has a remarkably simple gut population carrying two extracellular microbes in the crop where the ingested blood is stored. This simplicity renders it attractive for studying colonization factors. Aeromonas veronii, one of the leech symbionts, can be genetically manipulated and is a pathogen of mammals. Screening transposon mutants of A. veronii for colonization defects in the leech, we found one mutant, JG752, with a transposon insertion in an ascU homolog, encoding an essential component of type III secretion systems (T3SS). Competing JG752 against the wild type revealed that JG752 was increasingly attenuated over time (10-fold at 18 h and >10,000-fold at 96 h). This colonization defect was linked to ascU by complementing JG752 with the operon containing ascU. Fluorescence in situ hybridization analysis revealed that at 42 h 38% of JG752 cells were phagocytosed by leech macrophage-like cells compared with <0.1% of the parental strain. Using mammalian macrophages, a lactate dehydrogenase release assay revealed that cytotoxicity was significantly reduced in macrophages exposed to JG752. In a mouse septicemia model, JG752 killed only 30% of mice, whereas the parent strain killed 100%, showing the importance of T3SS for both pathogenesis and mutualism. Phagocytic immune cells are important not only in defending against pathogens but also in maintaining the mutualistic symbiont community inside the leech, demonstrating that animals use similar, conserved mechanisms to control bacterial populations, even when the outcomes differ dramatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk

Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...

متن کامل

Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria

Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secret...

متن کامل

In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli

  Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...

متن کامل

P-184: The Role of Cell Surface Toll Like Receptors in Endometriosis

Background: Toll like receptors (TLRs) are a major family of innate immune systems which recognize specific pathogen associated molecular patterns (PAMPS)in bacterial, fungi, virus and parasites. Human TLRs comprise a large family of 10 different type proteins that are expressed on various immune cells. Among these receptors, TLR1, 2, 4, 5, 6 and 10 were expressed on the cell surface. TLR2 form...

متن کامل

Exploitation of Eukaryotic Ubiquitin Signaling Pathways by Effectors Translocated by Bacterial Type III and Type IV Secretion Systems

The specific and covalent addition of ubiquitin to proteins, known as ubiquitination, is a eukaryotic-specific modification central to many cellular processes, such as cell cycle progression, transcriptional regulation, and hormone signaling. Polyubiquitination is a signal for the 26S proteasome to destroy earmarked proteins, but depending on the polyubiquitin chain topology, it can also result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 22  شماره 

صفحات  -

تاریخ انتشار 2007