Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins.
نویسندگان
چکیده
The microscopic structures of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) resins have been modeled by generating atomistic microstructures using stochastic-like algorithms, which are subsequently relaxed using molecular dynamics. Two different generation algorithms have been tested. The relaxation of the microstructures generated by the first algorithm, which is based on a homogeneous construction of the resin, leads to a significant overestimation of the experimental density as well as to an unsatisfactory description of the porosity. In contrast, the generation approach that combines algorithms for the heterogeneous growing and branching of the chains enables the formation of crosslinks with different topologies. In particular, the intrinsic heterogeneity observed in these resins is efficiently reproduced when the topological loops, which are defined by two or more crosslinks closing a cycle, are present in their microscopic description. Thus, the apparent density, porosity and pore volume estimated using microstructures with these topological loops, called super-crosslinks, are in very good agreement with the experimental results. Although the backbone dihedral angle distribution of the generated and relaxed models is not influenced by the topology, the number and type of crosslinks affect the medium- and long-range atomic disposition of the backbone atoms and the distribution of sulfonic groups. An analysis of the distribution of the local density indicates that super-crosslinks are responsible for the heterogeneous homogenization observed during the MD relaxation. Finally the π-π stacking interactions have been analyzed. Results indicate that those in which the two rings adopt a T-shaped disposition are considerably more abundant as compared to those with the co-facially oriented rings, independently of the resin topology.
منابع مشابه
Preparation and physical characterization of a sulfonated poly(styrene-co-divinylbenzene) and polypyrrole composite membrane
The properties of cation-exchange membranes based on polymeric composites of sulfonated poly(styrene-co-divinylbenzene) and polypyrrole (Ppy) are discussed. The amount of Ppy in the composites depends on the oxidant solution concentration used in the synthesis. Comparing composite membranes, the highest electronic conductivity and the best thermal stability were obtained for the composite membr...
متن کامل1-Butanol absorption in poly(styrene-divinylbenzene) ion exchange resins for catalysis.
The swelling behaviour of poly(styrene-co-divinylbenzene), P(S-DVB), ion exchange resins in 1-butanol (BuOH) has been studied by means of atomistic classical molecular dynamics simulations (MD). The topological characteristics reported for the resin in the dry state, which exhibited complex internal loops (macropores), were considered for the starting models used to examine the swelling induced...
متن کاملCrosslinked Styrene/divinylbenzene Network Systems
Differences in properties of pure metaand pure para-divinylbenzene crosslinked polystyrene and their sulphonated products have been correlated with probable network structural differences. The para-divinylbenzene copolymerizes more slowly than does the meta isomer to give a crosslinked copolymer which swells less, sulphonates less rapidly, and, when sulphonated, gives an ion exchanger which has...
متن کاملFabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells
A novel proton exchange membrane has been prepared using sulfonated poly(styrene-divinylbenzene) resin(SPSDR)–polyethylene(PE). The membrane is characterized by FT-IR, SEM and TGA/DSC. Water uptake, oxidative resistance, ionic conductivity and methanol permeability are measured to evaluate its performance in a direct methanol fuel cell. The on-set degradation temp...
متن کاملDetermination of glycerol derivatives by High-performance liquid chromatography
A chromatographic method for the identification of glycerol derivatives, particularly glyceraldehyde, dihydroxyacetone, mesoxalic, tartronic, glycolic and glyceric acids on an ion-exchange 8% crosslinked calcium sulfonated divinylbenzene-styrene resin column was developed and validated. The experiments included a systematic study of the effect of column temperature (60, 70 °C); flow rate (0.2, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2015