Cyclic Cohomology and Higher Rank Lattices

نویسنده

  • MATHIAS FUCHS
چکیده

We review topologically Nistor’s computation of the homogeneous part of the periodic cyclic cohomology of crossed products Γ⋉A of torsion-free discrete groups Γ with a complex Γ-algebra A. We use periodic cyclic cohomology associated to bornological algebras. Let G be a complex connected semisimple Lie group and B be a minimal parabolic subgroup of G. Applied to torsion-free discrete subgroups Γ of G and the algebra A of smooth functions on the Furstenberg boundary G/B, the construction yields under a weak topological condition, together with the classical splitting principle, the surjectivity of the map HP `

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions of Cocompact Lattices in Certain Higher-rank Complete Kac–moody Groups

Let G be a complete Kac–Moody group of rank n ≥ 2 such that the Weyl group of G is a free product of cyclic groups of order 2. We construct new families of examples of cocompact lattices in G, many of which act transitively on the chambers of the building for G.

متن کامل

Vanishing up to the Rank in Bounded Cohomology

We establish the vanishing for non-trivial unitary representations of the bounded cohomology of SLd up to degree d− 1. It holds more generally for uniformly bounded representations on superreflexive spaces. The same results are obtained for lattices. We also prove that the real bounded cohomology of any lattice is invariant in the same range.

متن کامل

Representation Stability for Cohomology of Configuration Spaces in R Patricia Hersh and Victor Reiner

This paper studies representation stability in the sense of Church and Farb for representations of the symmetric group Sn on the cohomology of the configuration space of n ordered points in R. This cohomology is known to vanish outside of dimensions divisible by d− 1; it is shown here that the Sn-representation on the i(d− 1) cohomology stabilizes sharply at n = 3i (resp. n = 3i + 1) when d is ...

متن کامل

Counting Co-Cyclic Lattices

Abstract. There is a well-known asymptotic formula, due to W. M. Schmidt (1968) for the number of full-rank integer lattices of index at most V in Z. This set of lattices L can naturally be partitioned with respect to the factor group Z/L. Accordingly, we count the number of full-rank integer lattices L ⊆ Z such that Z/L is cyclic and of order at most V , and deduce that these co-cyclic lattice...

متن کامل

Representation Stability for Cohomology of Configuration Spaces in ${\mathbb{R}}^d$

This paper studies representation stability in the sense of Church and Farb for representations of the symmetric group S n on the cohomology of the configuration space of n ordered points in R d. This cohomology is known to vanish outside of dimensions divisible by d − 1; it is shown here that the S n-representation on the i(d − 1)st coho-mology stabilizes sharply at n = 3i (resp. n = 3i + 1) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006