Transcendental Ending Laminations

نویسنده

  • IAN AGOL
چکیده

Yair Minsky showed that punctured torus groups are classified by a pair of ending laminations (ν − , ν+). In this note, we show that there are ending laminations ν+ such that for any choice of ν − , the punctured torus group is transcendental as a subgroup of PSL2C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-realizability and Ending Laminations Proof of the Density Conjecture

We give a complete proof of the Bers-Sullivan-Thurston Density Conjecture. In the light of the Ending lamination theorem, it suffices to prove that any collection of possible ending invariants is realized by some algebraic limit of geometrically finite hyperbolic manifolds. The ending invariants are either Riemann surfaces or filling laminations supporting Masur domain measured laminations and ...

متن کامل

The Geometric Model and Coarse Lipschitz Equivalence Direct from Teichmüller Geodesics

A proof of the Ending Laminations Theorem is given which uses Teichmüller geodesics directly, restricted, for simplicity to the case when the ending laminations data is a pair of minimal laminations.

متن کامل

The Ending Laminations Theorem direct from Teichmüller Geodesics

A proof of the Ending Laminations Theorem is given which uses Teichmüller geodesics directly.

متن کامل

Asymptotics of Weil-Petersson geodesics I: ending laminations, recurrence, and flows

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...

متن کامل

. G T ] 1 3 N ov 2 00 8 Asymptotics of Weil - Petersson geodesics I : ending laminations , recurrence , and flows

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004