Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter
نویسندگان
چکیده
Component substitution (CS) and multiresolution analysis (MRA) based methods have been adopted in hyperspectral pansharpening. The major contribution of this paper is a novel CS-MRA hybrid framework based on intrinsic image decomposition and weighted least squares filter. First, the panchromatic (P) image is sharpened by the Gaussian-Laplacian enhancement algorithm to enhance the spatial details, and the weighted least squares (WLS) filter is performed on the enhanced P image to extract the high-frequency information of the P image. Then, the MTF-based deblurring method is applied to the interpolated hyperspectral (HS) image, and the intrinsic image decomposition (IID) is adopted to decompose the deblurred interpolated HS image into the illumination and reflectance components. Finally, the detail map is generated by making a proper compromise between the high-frequency information of the P image and the spatial information preserved in the illumination component of the HS image. The detail map is further refined by the information ratio of different bands of the HS image and injected into the deblurred interpolated HS image. Experimental results indicate that the proposed method achieves better fusion results than several state-of-the-art hyperspectral pansharpening methods. This demonstrates that a combination of an IID technique and a WLS filter is an effective way for hyperspectral pansharpening.
منابع مشابه
Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملMulti Modal Medical Image Fusion Using Weighted Least Squares Filter
A novel multi modal medical image fusion method based on weighted least squares filter is proposed. To perform the image fusion, a two-scale decomposition of the input images is performed. Then weighted least squares filter is used to calculate the weight maps for the base and detail layers and then a weighted average of the base and detail layer is performed to obtain the fused image. The perf...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملPansharpening with a Guided Filter Based on Three-Layer Decomposition
State-of-the-art pansharpening methods generally inject the spatial structures of a high spatial resolution (HR) panchromatic (PAN) image into the corresponding low spatial resolution (LR) multispectral (MS) image by an injection model. In this paper, a novel pansharpening method with an edge-preserving guided filter based on three-layer decomposition is proposed. In the proposed method, the PA...
متن کاملMulti-resolution analysis techniques and nonlinear PCA for hybrid pansharpening applications
Hyperspectral images have a higher spectral resolution (i.e., a larger number of bands covering the electromagnetic spectrum), but a lower spatial resolution with respect to multispectral or panchromatic acquisitions. For increasing the capabilities of the data in terms of utilization and interpretation, hyperspectral images having both high spectral and spatial resolution are desired. This can...
متن کامل