Observations of conduction driven evaporation in the early rise phase of solar flares

نویسندگان

  • Marina Battaglia
  • Lyndsay Fletcher
  • Arnold O. Benz
چکیده

Context. The classical flare picture features a beam of electrons, which were accelerated in a site in the corona, hitting the chromosphere. The electrons are stopped in the dense chromospheric plasma, emitting bremsstrahlung in hard X-rays. The ambient material is heated by the deposited energy and expands into the magnetic flare loops, a process termed chromospheric evaporation. In this view hard X-ray emission from the chromosphere is succeeded by soft-X-ray emission from the hot plasma in the flare loop, the soft X-ray emission being a direct consequence of the impact of the non-thermal particle beam. However, observations of events exist in which a pronounced increase in soft X-ray emission is observed minutes before the onset of the hard X-ray emission. Such pre-flare emission clearly contradicts the classical flare picture. Aims. For the first time, the pre-flare phase of such solar flares is studied in detail. The aim is to understand the early rise phase of these events. We want to explain the time evolution of the observed emission by means of alternative energy transport mechanisms such as heat conduction. Methods. RHESSI events displaying pronounced pre-flare emission were analyzed in imaging and spectroscopy. The time evolution of images and full sun spectra was investigated and compared to the theoretical expectations from conduction driven chromospheric evaporation. Results. The pre-flare phase is characterized by purely thermal emission from a coronal source with increasing emission measure and density. After this earliest phase, a small non-thermal tail to higher energies appears in the spectra, becoming more and more pronounced. However, images still only display one X-ray source, implying that this non-thermal emission is coronal. The increase of emission measure and density indicates that material is added to the coronal region. The most plausible origin is evaporated material from the chromosphere. Energy provided by a heat flux is capable of driving chromospheric evaporation. We show that the often used classical Spitzer treatment of the conductive flux is not applicable. The conductive flux is saturated. During the preflare-phase, the temperature of the coronal source remains constant or increases. Continuous heating in the corona is necessary to explain this observation. Conclusions. The observations of the pre-flare phase of four solar flares are consistent with chromospheric evaporation driven by a saturated heat flux. Additionally, continuous heating in the corona is necessary to sustain the observed temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Systematic Study of X-Ray Flares from Low-Mass Young Stellar Objects in the ρ Ophiuchi Star-Forming Region with Chandra

We report on the results of a systematic study of X-ray flares from low-mass young stellar objects, using two deep exposure Chandra observations of the main region of the ρ Ophiuchi star-forming cloud. From 195 X-ray sources, including class I–III sources and some young brown dwarfs, we detected a total of 71 X-ray flares. Most of the flares have the typical profile of solar and stellar flares,...

متن کامل

Relative Timing of Solar Flares Observed at Different Wavelengths

The timing of 503 solar flares observed simultaneously in hard X-rays, soft X-rays and Hα is analyzed. We investigated the start and the peak time differences in different wavelengths, as well as the differences between the end of the hard X-ray emission and the maximum of the soft X-ray and Hα emission. In more than 90% of the analyzed events, a thermal preheating seen in soft X-rays is presen...

متن کامل

The Neupert Effect in Solar Flares and Implications for Coronal Heating

Based on simultaneous observations of solar flares in hard and soft X-rays we studied several aspects of the Neupert effect. About half of 1114 analyzed events show a timing behavior consistent with the Neupert effect. For these events, a high correlation between the soft X-ray peak flux and the hard X-ray fluence is obtained, being indicative of electron-beam-driven evaporation. However, for a...

متن کامل

Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares: I. the Numerical Model

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified...

متن کامل

Solar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003

Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009