A New Learning Algorithm for Mean Field Boltzmann Machines

نویسندگان

  • Max Welling
  • Geoffrey E. Hinton
چکیده

We present a new learning algorithm for Mean Field Boltzmann Machines based on the contrastive divergence optimization criterion. In addition to minimizing the divergence between the data distribution and the equilibrium distribution that the network believes in, we maximize the divergence between one-step reconstructions of the data and the equilibrium distribution. This eliminates the need to estimate equilibrium statistics, so we do not need to approximate the multimodal probablility distribution of the free network with the unimodal mean field distribution. We test the learning algorithm on the classification of digits. A New Learning Algorithm for Mean Field Boltzmann Machines Max Welling G.E. Hinton Gatsby Unit 1 Boltzmann Machines The stochastic Boltzmann machine (BM) is a probabilistic neural network of symmetrically connected binary units taking values f0; 1g (Ackley, Hinton & Sejnowski, 1985). The variant used for unsupervised learning consists of a set of visible units v, which are clamped to the data v1:N , and a set of hidden units h, which allow the modelling of higher order statistics of the data. We may define the energy E of the system at a particular state fv;hg to be, E(v;h) = ( 1 2 v T Vv + 1 2 h T Wh+ vJh) (1) where we have added one unit with value always 1, whose weights to all other units represent the biases. In terms of the energy, the probability distribution of the system can be written as,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Large Margin Boltzmann Machines

Boltzmann Machines are a powerful class of undirected graphical models. Originally proposed as artificial neural networks, they can be regarded as a type of Markov Random Field in which the connection weights between nodes are symmetric and learned from data. They are also closely related to recent models such as Markov logic networks and Conditional RandomFields. Amajor challenge for Boltzmann...

متن کامل

Boltzmann Machine Learning Using Mean Field Theory and Linear Response Correction

We present a new approximate learning algorithm for Boltzmann Machines, using a systematic expansion of the Gibbs free energy to second order in the weights. The linear response correction to the correlations is given by the Hessian of the Gibbs free energy. The computational complexity of the algorithm is cubic in the number of neurons. We compare the performance of the exact BM learning algor...

متن کامل

Learning and Evaluating Boltzmann Machines

We provide a brief overview of the variational framework for obtaining deterministic approximations or upper bounds for the log-partition function. We also review some of the Monte Carlo based methods for estimating partition functions of arbitrary Markov Random Fields. We then develop an annealed importance sampling (AIS) procedure for estimating partition functions of restricted Boltzmann mac...

متن کامل

Learning in higher order Boltzmann machines using linear response

We introduce an efficient method for learning and inference in higher order Boltzmann machines. The method is based on mean field theory with the linear response correction. We compute the correlations using the exact and the approximated method for a fully connected third order network of ten neurons. In addition, we compare the results of the exact and approximate learning algorithm. Finally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002