Investigation of the role of oligopeptide transporter PEPT1 and sodium/glucose cotransporter SGLT1 in intestinal absorption of their substrates using small GTP-binding protein Rab8-null mice.

نویسندگان

  • Yukio Kato
  • Tomoko Sugiura
  • Yasuhito Nakadera
  • Mikihiro Sugiura
  • Yoshiyuki Kubo
  • Takashi Sato
  • Akihiro Harada
  • Akira Tsuji
چکیده

A small GTP-binding protein, Rab8, is essential for apical localization of oligopeptide transporter PEPT1/SLC15A1 and sodium/glucose cotransporter SGLT1/SLC5A1 in small intestine; deficiency of rab8 gene results in mislocalization and reduced expression of these transporters. Here, we examined the role of PEPT1 and SGLT1 in vivo in gastrointestinal absorption of a beta-lactam antibiotic, cefixime, and alpha-methyl-d-glycopyranoside (alpha-MDG), respectively, using rab8 gene knockout [rab8(-/-)] mice as experimental animals deficient in those transporters. Plasma concentration of cefixime and alpha-MDG after oral administration in rab8(-/-) mice was much lower than that in wild-type mice, whereas such reduction in oral absorption was not observed for antipyrine, membrane permeation of which is not transporter-mediated. Uptake of cefixime from the apical side of isolated small intestine assessed by means of the everted sac method in wild-type mice was decreased in the presence of excess unlabeled glycylsarcosine, a PEPT1 substrate. In contrast, the uptake in rab8(-/-) mice was much lower than that in wild-type mice and comparable with that of an extracellular marker, mannitol, suggesting that the apical membrane permeability of cefixime was reduced in rab8(-/-) mice. Uptake of cefixime in wild-type mice was pH-dependent, being higher at lower pH, whereas that in rab8(-/-) mice remained at the background level at all pH values examined. These results suggest that PEPT1 and SGLT1 play an important role in gastrointestinal absorption of cefixime and alpha-MDG, respectively, in vivo in mice. The present findings also illustrate the pharmacokinetic influence of the sorting machinery protein Rab8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal rhythm of H+-peptide cotransporter in rat small intestine.

In mammals, most physiological, biochemical, and behavioral processes show a circadian rhythm. In the present study, we examined the diurnal rhythm of the H+-peptide cotransporter (PEPT1), which transports small peptides and peptide-like drugs in the small intestine and kidney, using rats maintained in a 12-h photoperiod with free access to chow. The transport of [14C]glycylsarcosine (Gly-Sar),...

متن کامل

Maternal protein restriction during pregnancy affects gene expression and immunolocalization of intestinal nutrient transporters in rats.

Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant r...

متن کامل

PDZK1 regulates two intestinal solute carriers (Slc15a1 and Slc22a5) in mice.

Gastrointestinal (GI) absorption of certain therapeutic agents is thought to be mediated by solute carrier (SLC) transporters, although minimal in vivo evidence has been reported. Here, we show key roles of postsynaptic density 95/disk-large/ZO-1 (PDZ) domain-containing protein, PDZK1, as a regulatory mechanism of two solute carriers, Slc15a1 (oligopeptide transporter PEPT1) and Slc22a5 (carnit...

متن کامل

Induction of intestinal peptide transporter 1 expression during fasting is mediated via peroxisome proliferator-activated receptor alpha.

We previously demonstrated that starvation markedly increased the amount of mRNA and protein levels of the intestinal H+/peptide cotransporter (PEPT1) in rats, leading to altered pharmacokinetics of the PEPT1 substrates. In the present study, the mechanism underlying this augmentation was investigated. We focused on peroxisome proliferator-activated receptor alpha (PPARalpha), which plays a piv...

متن کامل

PHARMACOKINETICS, PHARMACODYNAMICS AND DRUG METABOLISM Peptide Transporter 1 Is Responsible for Intestinal Uptake of the Dipeptide Glycylsarcosine: Studies in Everted Jejunal Rings from Wild-type and Pept1 Null Mice

The purpose of this study was to determine the relative importance of peptide transporter 1 (PEPT1) in the uptake of peptides/mimetics from mouse small intestine, using glycylsarcosine (GlySar). After isolating jejunal tissue from wild-type and Pept1 null mice, 2 cm intestinal segments were everted and mounted on glass rods for tissue uptake studies. [14C]GlySar (4 :M) was studied as a function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 2009