Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries.

نویسندگان

  • Rui Wang
  • Songping Wu
  • Yichao Lv
  • Zhiqun Lin
چکیده

Zn2GeO4 nanorod/graphene composites (ZGCs) were yielded by a two-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod. The surface of the Zn2GeO4 nanorod was compactly covered and anchored by graphene sheets. The ZGCs were then utilized as anodes for lithium ion batteries (LIBs). Intriguingly, partially crystalline ZGC containing 10.2 wt % graphene possessed excellent electrochemical performance, namely, high reversible capacity (1020 mA h g(-1) in the first cycle), favorable cyclic performance (768 mA h g(-1) after 50 cycles), and commendable rate capability (780 mA h g(-1) at the current density of 0.8A g(-1)). The amorphous region in partially crystalline Zn2GeO4 nanorods and the elastic graphene sheets provided the accommodation of volume change during the charge and discharge processes. These advantageous attributes make ZGCs the potential anode materials for LIBs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance.

A facile one-step route was developed to synthesize crystalline CuGeO₃ nanowire/graphene composites (CGCs). Crystalline CuGeO₃ nanowires were tightly covered and anchored by graphene sheets, forming a layered structure. Subsequently, CGCs were exploited as electrode materials for lithium ion batteries (LIBs). The reversible formation of Li₂O buffer layer and elastic graphene sheets accommodated...

متن کامل

Facile hydrothermal synthesis of CuFeO2 hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries.

Delafossite CuFeO2 hexagonal platelets/rings and graphene composites were synthesized by a low temperature hydrothermal method. The formation mechanism of CuFeO2 hexagonal platelets/rings follows the combined effects of both GO and NaOH. The obtained composites as anode materials display a good battery performance with high reversible capacity, good rate capability and cyclic stability.

متن کامل

An organometallic approach for ultrathin SnO(x)Fe(y)S(z) plates and their graphene composites as stable anode materials for high performance lithium ion batteries.

Through an organometallic approach, ultrathin SnO(x)Fe(y)S(z) plates with ~2 nm single layer-thicknesses were obtained and their graphene composites showed very promising discharge capacities of up to 736 mA h g(-1) and excellent stabilities as anode materials in lithium ion batteries.

متن کامل

Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interact...

متن کامل

Synthesis of nanorod-FeP@C composites with hysteretic lithiation in lithium-ion batteries.

Nanorod-FeP@C composites are synthesized via a one-pot solution reaction of ferrocene (Fe(C5H5)2) with excess triphenylphosphine (PPh3) in sealed vacuum tubes at 390 °C, in which PPh3 is used as both the phosphorus source and solvent in the reaction. The structure and lithium storage performance of the as-prepared nanorod-FeP@C composites are intensively characterized, and it is interesting tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 27  شماره 

صفحات  -

تاریخ انتشار 2014