A proposal for evolutionary fuzzy systems using feature weighting: Dealing with overlapping in imbalanced datasets
نویسندگان
چکیده
http://dx.doi.org/10.1016/j.knosys.2014.09.002 0950-7051/ 2014 Elsevier B.V. All rights reserved. ⇑ Corresponding author. Tel.: +34 953 213016; fax: +34 953 212472. E-mail addresses: [email protected] (S. Alshomrani), [email protected] (A. Bawakid), [email protected] (Seong-O Shim), [email protected] (A. Fernández), [email protected] (F. Herrera). Saleh Alshomrani , Abdullah Bawakid , Seong-O Shim , Alberto Fernández b,⇑, Francisco Herrera a,c
منابع مشابه
ارائهروش جدید مبتنیبر برنامهنویسی ژنتیک برای وزندهی قوانین فازی در طبقهبندی نامتوازن
In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملAddressing Overlapping in Classification with Imbalanced Datasets: A First Multi-objective Approach for Feature and Instance Selection
In classification tasks with imbalanced datasets the distribution of examples between the classes is uneven. However, it is not the imbalance itself which hinders the performance, but there are other related intrinsic data characteristics which have a significance in the final accuracy. Among all, the overlapping between the classes is possibly the most significant one for a correct discriminat...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets
Imbalanced classification is related to those problems that have an uneven distribution among classes. In addition to the former, when instances are located into the overlapped areas, the correct modeling of the problem becomes harder. Current solutions for both issues are often focused on the binary case study, as multi-class datasets require an additional effort to be addressed. In this resea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 73 شماره
صفحات -
تاریخ انتشار 2015