Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize
نویسندگان
چکیده
Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS) models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD) analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding.
منابع مشابه
The Pattern and Distribution of Deleterious Mutations in Maize
Most nonsynonymous mutations are thought to be deleterious because of their effect on protein sequence and are expected to be removed or kept at low frequency by the action of natural selection. Nonetheless, the effect of positive selection on linked sites or drift in small or inbred populations may also impact the evolution of deleterious alleles. Despite their potential to affect complex trai...
متن کاملGenetic analysis of yield, yield-components and related phenological traits of maize (Zea mays L.) to breed under moisture stress conditions
Improved drought-tolerant maize hybrids would significantly reduce water consumption and increase yield in arid environments. Our knowledge about genetic parameters is very essential before starting a successful breeding program. The present research was carried out throughout three successive years between 2013-15 to reveal the pattern of inheritance in yield, yield-components and related...
متن کاملQuantitative trait loci mapping and the genetic basis of heterosis in maize and rice.
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that has been used for estimating the average degree of dominance of quantitative trait loci (QTL) and also for studying heterosis. In this study, we first develop a multiple-int...
متن کاملQTL for Maize Midparent Heterosis in the Heterotic Pattern American Dent × European Flint under Corn Borer Pressure
Despite the importance of heterosis and the efforts to comprehend this phenomenon, its molecular bases are still unknown. In this study, we intended to detect Quantitative trait loci (QTL) for mid-parent heterosis under infestation with the Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) using a North Carolina design III approach with a RIL population derived from a European flint inb...
متن کاملGenetic analysis of Biochemical and Physiological Traits using Haymen’s Graphical Approach in Lines and F2 Progenies of Maize (Zea mays L.)
The diallel mating design is an important tool used by plant breeding programs to obtain information on trait inheritance. Knowledge of gene action, heritability and genetic advance from selection is a prerequisite for starting a breeding program for developing varieties of maize. Five maize S7 lines and their F2 progenies were studied in a 5 × 5 half-diallel crossing design to evaluate the gen...
متن کامل