Nutrient-dependent regulation of autophagy through the target of rapamycin pathway.
نویسندگان
چکیده
In response to nutrient deficiency, eukaryotic cells activate macroautophagy, a degradative process in which proteins, organelles and cytoplasm are engulfed within unique vesicles called autophagosomes. Fusion of these vesicles with the endolysosomal compartment leads to breakdown of the sequestered material into amino acids and other simple molecules, which can be used as nutrient sources during periods of starvation. This process is driven by a group of autophagy-related (Atg) proteins, and is suppressed by TOR (target of rapamycin) signalling under favourable conditions. Several distinct kinase complexes have been implicated in autophagic signalling downstream of TOR. In yeast, TOR is known to control autophagosome formation in part through a multiprotein complex containing the serine/threonine protein kinase Atg1. Recent work in Drosophila and mammalian systems suggests that this complex and its regulation by TOR are conserved in higher eukaryotes, and that Atg1 has accrued additional functions including feedback regulation of TOR itself. TOR and Atg1 also control the activity of a second kinase complex containing Atg6/Beclin 1, Vps (vacuolar protein sorting) 15 and the class III PI3K (phosphoinositide 3-kinase) Vps34. During autophagy induction, Vps34 activity is mobilized from an early endosomal compartment to nascent autophagic membranes, in a TOR- and Atg1-responsive manner. Finally, the well-known TOR substrate S6K (p70 ribosomal protein S6 kinase) has been shown to play a positive role in autophagy, which may serve to limit levels of autophagy under conditions of continuously low TOR activity. Further insight into these TOR-dependent control mechanisms may support development of autophagy-based therapies for a number of pathological conditions.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThe downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy
Objective(s): Autophagy-related 4B (ATG4B) plays an important role in the process of autophagy induction. However, the molecular events that govern the expression of ATG4B in this process are not well known. Materials and Methods: Human ATG4B 3'-UTR region (1377 nt) containing miR-34a/miR-34c-5p binding site was amplified by PCR. Luciferase assay was used to assess the activity of reporter gene...
متن کاملHalofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer
Autophagy has a key role in metabolism and impacts on tumorigenesis. Our previous study found that halofuginone (HF) exerts anticancer activity in colorectal cancer (CRC) by downregulating Akt/mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway. But whether and how HF regulates autophagy and metabolism to inhibit cancer growth remains an open question. Here, we unveil that HF a...
متن کاملmTOR regulation of autophagy.
Nutrient starvation induces autophagy in eukaryotic cells through inhibition of TOR (target of rapamycin), an evolutionarily-conserved protein kinase. TOR, as a central regulator of cell growth, plays a key role at the interface of the pathways that coordinately regulate the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals. Although T...
متن کاملA longer and healthier life with TOR down-regulation: genetics and drugs.
Genetic down-regulation of a major nutrient-sensing pathway, TOR (target of rapamycin) signalling, can improve health and extend lifespan in evolutionarily distant organisms such as yeast and mammals. Recently, it has been demonstrated that treatment with a pharmacological inhibitor of the TOR pathway, rapamycin, can replicate those findings and improve aging in a variety of model organisms. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 37 Pt 1 شماره
صفحات -
تاریخ انتشار 2009