A Built-In Mechanism to Mitigate the Spread of Insect-Resistance and Herbicide-Tolerance Transgenes into Weedy Rice Populations
نویسندگان
چکیده
BACKGROUND The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. METHODOLOGY/PRINCIPAL FINDINGS An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m(2), which is approximately the recommended dose for the field application to control common rice weeds, killed all F(2) plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). CONCLUSIONS/SIGNIFICANCE Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations.
منابع مشابه
Limited Fitness Advantages of Crop-Weed Hybrid Progeny Containing Insect-Resistant Transgenes (Bt/CpTI) in Transgenic Rice Field
BACKGROUND The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmenta...
متن کاملA novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide
Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitn...
متن کاملAmbient insect pressure and recipient genotypes determine fecundity of transgenic crop‐weed rice hybrid progeny: Implications for environmental biosafety assessment
Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we e...
متن کاملTransgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop–weed hybrids of rice
Gene flow from transgenic crops allows novel traits to spread to sexually compatible weeds. Traits such as resistance to insects may enhance the fitness of weeds, but few studies have tested for these effects under natural field conditions. We created F 2 and F 3 crop-weed hybrid lineages of genetically engineered rice (Oryza sativa) using lines with two transgene constructs, cowpea trypsin inh...
متن کاملCan we stop transgenes from taking a walk on the wild side?
Whether the potential costs associated with broad-scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be minimized. But is it possible to achieve contai...
متن کامل