Early development of functional spatial maps in the zebrafish olfactory bulb.

نویسندگان

  • Jun Li
  • Julia A Mack
  • Marcel Souren
  • Emre Yaksi
  • Shin-ichi Higashijima
  • Marina Mione
  • Joseph R Fetcho
  • Rainer W Friedrich
چکیده

In the adult olfactory bulb (OB), particular chemical classes of odorants preferentially activate glomeruli within loosely defined regions, resulting in a coarse and fractured "chemotopic" map. In zebrafish, amino acids and bile acids predominantly stimulate glomeruli in the lateral and medial OB, respectively. We studied the development of these spatial response maps in zebrafish. At 3 d postfertilization (dpf), the OB contained protoglomerular structures that became refined and more numerous during subsequent days. In a transgenic zebrafish line expressing the Ca2+ indicator protein inverse pericam, mainly in mitral cells, odor responses in the OB were first detected at 2.5-3 dpf. Already at this stage, amino acids and bile acids evoked activity predominantly in the lateral and medial OB, respectively. Two-photon Ca2+ imaging using a synthetic indicator was used to reconstruct activity patterns at higher resolution in three dimensions. Responses to amino acids and bile acids were detected predominantly in the lateral and medial OB, respectively, with little overlap. Between 2.5 and 6 dpf, the number of odor-responsive units increased, but the overall spatial organization of activity persisted. Hence, a coarse spatial organization of functional activity maps is established very early during OB development when glomeruli are not yet differentiated. This spatial organization is maintained during development and growth of neuronal circuits and may have important functions for odor processing in larvae, for the differentiation of glomeruli, and for the refinement of activity maps at later developmental stages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional development of the olfactory system in zebrafish

The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurement...

متن کامل

Target-independent pattern specification in the olfactory epithelium

In mammals, odors are detected by approximately 1000 different types of odorant receptors (ORs), each expressed by a fraction of neurons in the olfactory epithelium. Neurons expressing a given OR are confined to one of four spatial zones but are distributed randomly throughout that zone. In the olfactory bulb, the axons of neurons expressing different ORs synapse at different sites, giving rise...

متن کامل

Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system.

Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafi...

متن کامل

Topological Reorganization of Odor Representations in the Olfactory Bulb

Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spat...

متن کامل

Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals.

Glomeruli are anatomical and possibly functional modules in the vertebrate olfactory bulb. We investigated the spatial arrangement of glomeruli in the olfactory bulbs of adult zebrafish (Brachydanio rerio). A solution of the lipophilic tracer Dil was injected into the nasal cavities. Axons of sensory neurons projecting from the olfactory epithelium into the bulb were traced anterogradely, thus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 24  شماره 

صفحات  -

تاریخ انتشار 2005