Detection of Interactions between Proteins through Rotation Forest and Local Phase Quantization Descriptors
نویسندگان
چکیده
Protein-Protein Interactions (PPIs) play a vital role in most cellular processes. Although many efforts have been devoted to detecting protein interactions by high-throughput experiments, these methods are obviously expensive and tedious. Targeting these inevitable disadvantages, this study develops a novel computational method to predict PPIs using information on protein sequences, which is highly efficient and accurate. The improvement mainly comes from the use of the Rotation Forest (RF) classifier and the Local Phase Quantization (LPQ) descriptor from the Physicochemical Property Response (PR) Matrix of protein amino acids. When performed on three PPI datasets including Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori, we obtained good results of average accuracies of 93.8%, 97.96%, and 89.47%, which are much better than in previous studies. Extensive validations have also been explored to evaluate the performance of the Rotation Forest ensemble classifier with the state-of-the-art Support Vector Machine classifier. These promising results indicate that the proposed method might play a complementary role for future proteomics research.
منابع مشابه
Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملRegion-based Approaches and Descriptors Extracted from the Co- Occurrence Matrix
Recently proposed texture descriptors extracted from the co-occurrence matrix across several datasets is surveyed and validated in this paper; moreover, two new methods for extracting features from the Gray Level Co-occurrence Matrix (GLCM) are proposed. The descriptors are extracted not only from the entire GLCM but also from subwindows. These texture descriptors are used to train a support ve...
متن کاملFace and texture image analysis with quantized filter response statistics
Image appearance descriptors are needed for different computer vision applications dealing with, for example, detection, recognition and classification of objects, textures, humans, etc. Typically, such descriptors should be discriminative to allow for making the distinction between different classes, yet still robust to intra-class variations due to imaging conditions, natural changes in appea...
متن کاملA new shape retrieval method using the Group delay of the Fourier descriptors
In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کامل