Genetic analysis of macrophage characteristics as a tool to identify tumor susceptibility genes: mapping of three macrophage-associated risk inflammatory factors, marif1, marif2, and marif3.
نویسندگان
چکیده
Genetic predisposition to cancer is influenced by allelic variation in tumor susceptibility genes (TSGs) as present in the germline. We previously demonstrated in the mouse that TSGs frequently participate in genetic interactions, indicating that they represent molecular networks. Inflammation may constitute one of the molecular networks underlying susceptibility to cancer by influencing the tumor microenvironment. Because macrophages play a key role in inflammation and are often associated with tumors, we argue that a subset of TSGs can be identified by examining the genetics of macrophage characteristics. A panel of inflammation-related assays was established to phenotype mouse bone marrow-derived macrophages, which included stimulation with lipopolysaccharides followed by measurement of secretion of tumor necrosis factor alpha and the p40 chain of interleukin-12 and of expression of inducible nitric oxide synthase and cyclooxygenase-2. This panel of assays was used for linkage analysis and applied to bone marrow-derived macrophages derived from individual mice of segregating crosses between inbred strain O20 and the highly related strains NTX-10 and NTX-20, which differed from O20 in only 10% of their genome, to reduce genetic complexity. Three macrophage-associated risk inflammatory factors were mapped-Marif1, Marif2, and Marif3-that each affected several inflammation-related assays, confirming that they function within molecular networks. Moreover, Marif1 and Marif2 were localized in regions with established linkage for both quantitative and qualitative aspects of lung cancer susceptibility. These studies provide a novel approach to investigate the genetics of microenvironmental influence on predisposition to tumorigenesis, thereby contributing to development of new strategies that aim to prevent or treat cancer.
منابع مشابه
Hepcidin Induces M1 Macrophage Polarization in Monocytes or THP-1 Derived Macrophages
Background: Macrophage polarization plays a critical role in determining the inflammatory states. Hepcidin is a key negative regulator of iron homeostasis and functions. Although hepcidin has been shown to affect ferroportin expression in macrophages, whether it affects macrophage polarization is still largely unknown. Objective: To address whether hepcidin ind...
متن کاملO-28: Endometriosis Is Influenced by The Promoter Haplotype-Based Expression of Macrophage Migration Inhibitory Factor (MIF)
Background: Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine that is secreted by accumulated active macrophages in ectopic tissue of endometriosis. MIF is involved in pathophysiological events of endometriosis, such as angiogenesis and cell proliferation. MIF that stimulates the synthesis of PGE2, leads to over-expression of local estradiol synthesis in endometrio...
متن کاملAnti-inflammatory Effects of PMX205 in Mouse Macrophage Periodontitis Model
Background: C5areceptor antagonistPMX205 is a synthetic hexapeptidecapable of blocking C5a-C5a receptor (C5aR) axis by simulating C5a active C-terminal amino acid residues. This hexapeptide presents good anti-inflammatory effects in a myriad inflammation models. The anti-inflammatory effect of PMX205 on periodontitis is yet to be fully fathomed. Objective: To examine the anti-inflammatory effec...
متن کاملTranscriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection
Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 10 شماره
صفحات -
تاریخ انتشار 2004