Differential proteomics analyses reveal anxiety-associated molecular and cellular mechanisms in cingulate cortex synapses
نویسندگان
چکیده
Selectively inbred animal models for anxiety traits provide useful insights for the elucidation of the relevant pathophysiological mechanisms of anxiety disorders by modeling molecular pathology in a defined genetic background. However, little is currently known about the functional characteristics that distinguish high anxiety-related (HAB) from low anxiety-related (LAB) behaviors. Analytical integration of cingulate cortex (CC) synaptosomal proteomes of HAB and LAB mice revealed that the synaptic environment in the cingulate cortex of HAB animals is dominated by the stabilization and enlargement of existing excitatory dendritic spines, associated with increased high-frequency stimulation of excitatory glutamatergic synapses, enhanced control over the modulation of synaptic strength and relatively weakened inhibitory GABAergic control together with increased spontaneous synaptic activity in non-glutamatergic network members. This is coupled with increased oxidative phosphorylation (OXPHOS), enhanced fatty acid oxidation and ATP production in synaptic mitochondria. The mitochondrial effects of increased oxidative and ionic stress appear to be controlled through at least seven different mechanisms, while the mechanisms attached to the maintenance of mitochondrial structural integrity and protein homeostasis are significantly reinforced. Overall, this analysis describes a context characterized by excitatory long-term potentiation (LTP) maintenance, low de novo spine generation, significant neurotransmission imbalances and structural as well as metabolic adaptations to persistent synaptic mitochondrial Ca 2+ loading and oxidative stress associated with the HAB phenotype
منابع مشابه
Structural Changes in the Medial Prefrontal Cortex and Anterior Cingulate Cortex of Dehydroepiandrosterone-Induced Wistar Rat Model of Polycystic Ovarian Syndrome
Introduction: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that is associated with an increased risk of infertility. This study aims to evaluate the neurobehavioral and neurochemical changes along with the associated changes in the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) of the dehydroepiandrosterone (DHEA)-induced PCOS model rats. Metho...
متن کاملThe Analgesic and Anxiolytic Activity of Resveratrol Mediated by Different Sub-Types of α-Adrenoceptors of Anterior Cingulate Cortex Following Neuropathic Pain in Male Rats
Background and Objective: The mechanism of analgesic and anxiolytic activity of resveratrol in neuropathic pain conditions remains obscure. The present study was conducted to examine whether the analgesic and anxiolytic activities of resveratrol are associated with α1- and α2-adrenoceptors of the anterior cingulate cortex (ACC), which is a key area of the cortex in the pain process, following n...
متن کاملDifferential Effects of the Lateral Hypothalamus Lesion as an Origin of Orexin and Blockade of Orexin-1 Receptor in the Orbitoftontal Cortex and Anterior Cingulate Cortex on Their Neuronal Activity
Several studies revealed that orexins may take part in the regulation of the different forms of affective and cognitive processes during wakefulness. The orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) as an important part of the prefrontal cortex (PFC) have a crucial role in cognitive processes such as reward and decision-making and has a high density of orexin receptor type 1 (...
متن کاملPain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain.
Pain can be modulated by several cognitive techniques, typically involving increased cognitive control and decreased sensory processing. Recently, it has been demonstrated that pain can also be attenuated by mindfulness. Here, we investigate the underlying brain mechanisms by which the state of mindfulness reduces pain. Mindfulness practitioners and controls received unpleasant electric stimuli...
متن کاملPre-LTP requires extracellular signal-regulated kinase in the ACC
The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known ...
متن کامل