Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder
نویسندگان
چکیده
The paper deals with polynomial interpolation, least-square approximation and cubature of functions defined on the rectangular cylinder, K = D × [−1, 1], with D the unit disk. The nodes used for these processes are the Approximate Fekete Points (AFP) and the Discrete Leja Points (DLP) extracted from suitable Weakly Admissible Meshes (WAMs) of the cylinder. ¿From the analysis of the growth of the Lebesgue constants, approximation and cubature errors, we show that the AFP and the DLP extracted from WAM are good points for polynomial approximation and numerical integration of functions defined on the cylinder.
منابع مشابه
Weakly Admissible Meshes and Discrete Extremal Sets
We present a brief survey on (Weakly) Admissible Meshes and corresponding Discrete Extremal Sets, namely Approximate Fekete Points and Discrete Leja Points. These provide new computational tools for polynomial least squares and interpolation on multidimensional compact sets, with different applications such as numerical cubature, digital filtering, spectral and high-order methods for PDEs.
متن کاملTrivariate polynomial approximation on Lissajous curves ∗
We study Lissajous curves in the 3-cube that generate algebraic cubature formulas on a special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun package), and to compute discrete extremal sets of Fekete and Leja type for trivariate polynomial interpolation. Applications co...
متن کاملPolynomial interpolation and cubature over polygons
We have implemented a Matlab code to compute Discrete Extremal Sets (of Fekete and Leja type) on convex or concave polygons, together with the corresponding interpolatory cubature formulas. The method works by QR and LU factorizations of rectangular Vandermonde matrices on Weakly Admissible Meshes (WAMs) of polygons, constructed by polygon quadrangulation. 2000 AMS subject classification: 65D05...
متن کاملLocating good points for multivariate polynomial approximation
Locating good points for multivariate polynomial approximation, in particular interpolation, is an open challenging problem, even in standard domains. One set of points that is always good, in theory, is the so-called Fekete points. They are defined to be those points that maximize the (absolute value of the) Vandermonde determinant on the given compact set. However, these are known analyticall...
متن کاملComputing Multivariate Fekete and Leja Points by Numerical Linear Algebra
We discuss and compare two greedy algorithms, that compute discrete versions of Fekete-like points for multivariate compact sets by basic tools of numerical linear algebra. The first gives the so-called “Approximate Fekete Points” by QR factorization with column pivoting of Vandermonde-like matrices. The second computes Discrete Leja Points by LU factorization with row pivoting. Moreover, we st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012