A Method for Solving Intuitionistic Fuzzy Assignment Problem Using Branch and Bound Method
نویسندگان
چکیده
In this paper, we investigate an assignment problem in which cost coefficients are triangular intuitionistic fuzzy numbers. In conventional assignment problem, cost is always certain. This paper develops an approach to solve an intuitionistic fuzzy assignment problem where cost is not deterministic numbers but imprecise ones. Here, the elements of the costs (profits) matrix of the assignment problem are triangular intuitionistic fuzzy numbers. Then its triangular shaped membership and non-membership functions are defined. A new ranking procedure which can be found in [2] and is used to compare the intuitionistic fuzzy numbers so that an Intuitionistic Fuzzy Branch Bound method may be applied to solve the intuitionistic fuzzy assignment problem. Numerical examples show that an intuitionistic fuzzy ranking method offers an effective tool for handling an intuitionistic fuzzy assignment problem.
منابع مشابه
Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle
In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...
متن کاملA Modified Approach for Solving Intuitionistic Fuzzy Assignment Problems
The Assignment Problem is one of the most studied, well known and important problem in mathematics and is used very often in solving problems of engineering and management sciences. In this problem denotes the cost for assigning the job to the person. This cost is usually deterministic in nature. In this paper has been considered to be generalized trapezoidal intuitionistic fuzzy numbers denote...
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملA novel parametric ranking method for intuitionistic fuzzy numbers
Since the inception of intuitionistic fuzzy sets in 1986, many authors have proposed different methods for ranking intuitionistic fuzzy numbers (IFNs). How ever, due to the complexity of the problem, a method which gives a satisfactory result to all situations is a challenging task. Most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with hum...
متن کاملSolving Fully Fuzzy Linear Programming Problems with Zero-One Variables by Ranking Function
Jahanshahloo has suggested a method for the solving linear programming problems with zero-one variables. In this paper we formulate fully fuzzy linear programming problems with zero-one variables and a method for solving these problems is presented using the ranking function and also the branch and bound method along with an example is presented.
متن کامل