Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans.
نویسندگان
چکیده
The objective of the present study was to develop a physiologically based pharmacokinetic (PBPK) model for a ternary mixture of alkyl benzenes [toluene (TOL), m-xylene (XYL), and ethylbenzene (EBZ)] in rats and humans. The approach involved the development of the mixture PBPK model in the rat and extrapolation to humans by substituting rat physiological parameters and blood:air partition coefficients in the model with those of humans, scaling maximal velocity for metabolism on the basis of body weight0.75 and keeping all other model parameters species-invariant. The development of the PBPK model for the ternary mixture in the rat was accomplished by initially validating or refining the existing PBPK models for TOL, XYL, and EBZ and linking the individual chemical models via the hepatic metabolism term. Accordingly, the Michaelis-Menten equation for each solvent was modified to test four possible mechanisms of metabolic interaction (i.e., no interaction, competitive inhibition, noncompetitive inhibition, and uncompetitive inhibition). The metabolic inhibition constant (Ki) for each binary pair of alkyl benzenes was estimated by fitting the binary chemical PBPK model simulations to previously published data on blood concentrations of TOL, XYL, and EBZ in rats exposed for 4 hr to a binary combination of 100 or 200 ppm of each of these solvents. Competitive metabolic inhibition appeared to be the most plausible mechanism of interaction at relevant exposure concentrations for all binary mixtures of alkyl benzenes in the rat (Ki,TOL-XYL = 0.17; Ki,TOL-EBZ = 0.79; Ki,XYL-TOL = 0.77; Ki,XYL-EBZ = 1.50; Ki,EBZ-TOL = 0.33; Ki,EBZ-XYL = 0.23 mg/L). Incorporating the Ki values obtained with the binary chemical mixtures, the PBPK model for the ternary mixture simulated adequately the time course of the venous blood concentrations of TOL, XYL, and EBZ in rats exposed to a mixture containing 100 ppm each of these solvents. Following the validation of the ternary mixture model in the rat, it was scaled to predict the kinetics of TOL, XYL, and EBZ in blood and alveolar air of human volunteers exposed for 7 hr to a combination of 17, 33, and 33 ppm, respectively, of these solvents. Model simulations and experimental data obtained in humans indicated that exposure to atmospheric concentrations of TOL, XYL, and EBZ that remain within the permissible concentrations for a mixture would not result in biologically significant modifications of their pharmacokinetics. Overall, this study demonstrates the utility of PBPK models in the prediction of the kinetics of components of chemical mixtures, by accounting for mechanisms of binary chemical interactions.
منابع مشابه
Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans
Although green tea (Camellia sinensis) (GT) contains a large number of polyphenolic compounds with anti-oxidative and anti-proliferative activities, little is known of the pharmacokinetics and tissue dose of tea catechins (TCs) as a chemical mixture in humans. The objectives of this study were to develop and validate a physiologically based pharmacokinetic (PBPK) model of tea catechin mixture (...
متن کامل1,4-bis(triphenyl phosphonium)butane peroxodisulfate: conversion of alkyl benzenes to carbonyl compounds
1,4-bis(triphenyl phosphonium)butane peroxodisulfate(BTPPBPDS) were synthesized by treating 1,4-bis(triphenyl phosphonium)butane dibromide and potassium peroxydisulfate in aqueous solution.This was used mild and efficient reagent for oxidation of alkyl benzenes to their corresponding carbonyl compounds in very good to high yields.
متن کاملA Model of Time-dependent Biodistribution of 153Sm-Maltolate Complex and Free 153Sm Cation Using Compartmental Analysis
Introduction Compartmental analysis allows the mathematical separation of tissues and organs to determine activity concentration in each point of interest. Biodistribution studies on humans are costly and complicated, whereas such assessments can be easily performed on rodents. In this study, we aimed to develop a pharmacokinetic model of 153Sm-maltolate complex as a novel therapeutic agent and...
متن کاملIn silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane.
In this study, we integrated our understanding of biochemistry, physiology, and metabolism of three commonly used organic solvents with computer simulation to present a new approach that we call "in silico" toxicology. Thus, we developed an interactive physiologically based pharmacokinetic (PBPK) model to predict the individual kinetics of trichloroethylene (TCE), perchloroethylene (PERC), and ...
متن کاملPhysiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology and applied pharmacology
دوره 144 1 شماره
صفحات -
تاریخ انتشار 1997