Semi-supervised Clustering Using Heterogeneous Dissimilarities
نویسنده
چکیده
منابع مشابه
Semi-supervised Clustering on Heterogeneous Information Networks
Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information netwo...
متن کاملLeaf classification using multiple feature analysis based on semi-supervised clustering
Multiple features such as the margin, the shape and the texture of plant leaves are of great importance for classification of plant species, as they are often regarded as the unique features to identify plants. In this paper, we study the performance of a recently proposed semi-supervised fuzzy clustering algorithm with feature discrimination for leaf classification, based on features generated...
متن کاملClustering Heterogeneous Data with Mutual Semi-supervision
We propose a new methodology for clustering data comprising multiple domains or parts, in such a way that the separate domains mutually supervise each other within a semi-supervised learning framework. Unlike existing uses of semi-supervised learning, our methodology does not assume the presence of labels from part of the data, but rather, each of the different domains of the data separately un...
متن کاملNew Approaches for Clustering High Dimensional Data
JINZE LIU: New Approaches for Clustering High Dimensional Data. (Under the direction of Wei Wang.) Clustering is one of the most effective methods for analyzing datasets that contain a large number of objects with numerous attributes. Clustering seeks to identify groups, or clusters, of similar objects. In low dimensional space, the similarity between objects is often evaluated by summing the d...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کامل